大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
大模型的发展一个重要的基础条件是底层硬件计算能力的大幅提高,特别是GPU的发展,与transformer架构的大模型训练非常契合。当前全球最大的GPU供应商英伟达系列的显卡几乎垄断了大模型训练与推理的所有GPU芯片市场。除了英伟达显卡本身算力强悍外,基于英伟达GPU之上构建的CUDA、PyTorch等平台软件生态也是非常重要的一环。而最新的PyTorch2.1版本发布的一个beta特性中包含了对华为昇腾芯片的原生支持,这也是大模型生态多样性发展的一个很重要的信号。
突破英特尔CPU+英伟达GPU的大模型训练硬件组合:苹果与AMD都有新进展!
MistralAI开源240亿参数的多模态大模型Mistral-Small-3.1-24B:评测结果与GPT-4o-mini与Gemma 3 27B有来有回,开源且免费商用,支持24种语言
基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果
抛弃RLHF?MetaAI发布最新大语言模型训练方法:LIMA——仅使用Prompts-Response来微调大模型
LLaMA2 7B一样的性能但是由15倍的推理速度!Deci开源DeciLM-6B和DeciLM-6B-Instruct,发布一天上榜HuggingFace Trending