大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
基于人类反馈的强化学习方法(Reinforcement Learning with Human Feedback,RLHF)是一种强化学习(Reinforcement Learning,RL)的变种,它利用人类的专业知识和反馈来指导机器学习模型的训练和决策过程。这种方法旨在克服传统RL方法中的一些挑战,例如样本效率低、训练困难和需要大量的试错。在大语言模型(LLM)中,RLHF带来的模型效果提升不仅仅是模型偏好与人类偏好的对齐,模型的理解能力和效果也会更好。
如何训练一个大语言模型?当前基于transformer架构的大语言模型的通用训练流程介绍
重磅优惠!打1折!OpenAI开放最新的GPT-3.5和ChatGPT模型API商业服务!
0基础安装搭建Visual Studio Code开发环境——Python开发环境
Mistral AI开源全新的120亿参数的Mistral NeMo模型,Mistral 7B模型的继任者!完全免费开源!中文能力大幅增强!
Stable Diffusion的最新实现——KerasCV的官方实现!
CentOS搭建SVN服务器及使用Eclipse连接SVN服务器