DataLearner 标志DataLearnerAI
最新AI资讯
大模型评测
大模型列表
大模型对比
资源中心
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:Seq2Seq
标签

「Seq2Seq」相关文章

汇总「Seq2Seq」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#Seq2Seq
Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例

Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例

RNN的应用有很多,尤其是两个RNN组成的Seq2Seq结构,在时序预测、自然语言处理等方面有很大的用处,而每个RNN中一个节点是一个Cell,它是RNN中的基本结构。本文从如何使用RNN建模数据开始,重点解释RNN中Cell的结构,以及Keras中Cell相关的输入输出及其维度。我已经尽量解释了每个变量,但可能也有忽略,因此可能对RNN之前有一定了解的人会更友好,本文最主要的目的是描述Keras中RNNcell的参数以及输入输出的两个注意点。如有问题也欢迎指出,我会进行修改。

2020/07/12 21:25:134,051
#Keras#RNN
深度学习之Encoder-Decoder架构

深度学习之Encoder-Decoder架构

深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。

2019/03/19 11:19:0413,377
#Encoder-Decoder#RNN

专题合集

RAG(检索增强生成)
Long Context 长上下文
AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 重回第一!OpenAI升级GPT-4-Turbo到2024-04-09版本(gpt-4-turbo-2024-04-09),GPT-4推理和数学能力大幅提高,基准测试最高有接近20%的提升!
  • 网络爬虫之基础java集合操作篇
  • 大模型泛化能力详解:大模型泛化能力分类、泛化能力来源和泛化研究的方向
  • 平衡二叉树(Balanced Binary Tree)
  • Qwen1.5系列再次更新:阿里巴巴开源320亿参数Qwen1.5-32B模型,评测结果超过Mixtral 8×7B MoE,性价比更高!
  • MetaGPT技术全解析:另一个AutoGPT,一个可以替代小型软件开发团队的配备齐全的软件开发GPT,产品经理、系统设计、代码实现一条龙
  • 使用R语言进行K-means聚类并分析结果
  • 重磅Llama3即将发布!目前已知有80亿和700亿参数两个版本,其中Llama3-8B-Instruct已经上架微软云服务市场!