EM算法简介及其例子
EM(expectation-maximization)算法是统计学中求统计模型的最大似然和最大后验参数估计的一种迭代式算法,模型一般是依赖于不可观测的潜在变量。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
EM(expectation-maximization)算法是统计学中求统计模型的最大似然和最大后验参数估计的一种迭代式算法,模型一般是依赖于不可观测的潜在变量。
这篇博客主要翻译自Gregor Heinrich的技术博客Parameter estimation for text analysis,介绍极大似然估计、极大后验估计和贝叶斯参数估计的原理和案例