大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
大规模多学科多模态理解与推理基准(MMMU)于2023年11月推出,是一种用于评估多模态模型的复杂工具。该基准测试人工智能系统在需要大学水平学科知识和深思熟虑推理的任务上的能力。与之前的基准不同,MMMU强调跨多个领域的先进感知和推理,旨在衡量朝专家级人工智能通用智能(AGI)的进展。
大模型多模态评测基准MMMU(大规模多学科多模态理解和推理基准)是一项旨在评估多模态人工智能模型在复杂跨学科任务中综合能力的测试工具。
Dirichlet Multinomial Mixture Model做短文本聚类(包括代码)
OpenAI最新的GPT-4V的多模态API接口是如何计算tokens的?这些计算逻辑背后透露了GPT-4V什么样的模型架构信息?
微软开源DeepSpeed Chat——一个端到端的RLHF的pipeline,可以用来训练类ChatGPT模型。
截至目前最强的70亿参数大语言模型:开源可商用的RedPajam 7B完全版发布!
Falcon-40B:截止目前最强大的开源大语言模型,超越MetaAI的LLaMA-65B的开源大语言模型
Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例