大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
多项式分布是非常常见的分布,他是二项分布在多维上的推广。例如掷骰子结果中,1-6点出现的次数就是一个多项式分布。多项式分布在如主题建模中非常常见,本文将讲述多项式分布的贝叶斯推导过程。
狄利克雷分布作为多项式分布的先验大家应该比较熟悉了。这里介绍另外一种Dirichlet树结构的分布,也可以作为多项式分布的先验,但却更加灵活
高斯分布是一种非常常见的分布,对于一元高斯分布我们比较熟悉,对于高斯分布的多元形式有很多人不太理解。这篇博客的材料主要来源Andrew Ng在斯坦福机器学习课的材料。
6种大模型的使用方式总结,使用领域数据集持续做无监督预训练可能是一个好选择
基于java的网络爬虫框架(实现京东数据的爬取,并将插入数据库)
MetaAI开源高质量高精度标注的图像数据集FACET:3.2万张图片、5万个主题,平均图像解析度达到1500×2000
《Effective Java 第三版》笔记之二 当构造参数很多的时候考虑使用builder
text-davinci-003后继者!OpenAI发布了一个新的补全大模型:GPT-3.5-Turbo-Instruct,完全的指令模型,没有聊天优化
聊天大模型的输出速度应该是多少?单张显卡最多可以支持多少个人同时聊天?来自贾扬清最新的讨论