大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
今天Google发布了TensorStore,这是一个开源的C++和Python软件库,设计用于存储和操作大规模n维数据。TensorStore已经被用来解决科学计算中的关键工程挑战(例如,管理和处理神经科学中的大型数据集,如石油级的三维电子显微镜数据和神经元活动的 "4d "视频)。TensorStore还被用于创建大规模的机器学习模型,如PaLM,解决了分布式训练期间管理模型参数(检查点)的问题。
最近一段时间Text-to-Image模型十分火热。OpenAI的DALL·E2模型的效果十分惊艳。不过,由于Open AI现在的不Open策略,大家还无法使用这个模型,业界只开放了一个小版本的DALL·E mini。不过,前段时间,Stability AI发布的Stable Diffusion其效果明显好于现有模型,且免费开放使用,让大家都开心了一把。不过原有模型是Torch实现的,而现在,基于Tensorflow/Keras实现的Stable Diffusion已经开源。
Tensorflow和PyTorch是深度学习最流行的两个框架,二者都有坚定的支持者。一般认为由于Google的支持,TensorFlow的社区支持比较好,在工业应用广泛。但是尽管有keras加持,但易用性方面依然被认为不如PyTorch。而后者最早由Facebook人工智能团队开发。由于其易用性,被认为在科学研究中有广泛使用。那么,最近几年二者发展如何,是否实际还如之前的观点一样,这里AssemblyAI的一个作者做了一些对比。
Tensorflow中tf.data.Dataset是最常用的数据集类,我们也使用这个类做转换数据、迭代数据等操作。本篇博客将简要描述这个类的使用方法。
tf.nn.softmax_cross_entropy_with_logits函数
这篇博客是AYLIEN上的一篇关于生成对抗网络的简单介绍,包含非常简洁的代码示例。是入门非常好的材料。
使用Tensorflow的高级API - tf.contrib.learn 搭建一个DNN分类器
HuggingFace宣布在transformers库中引入首个RNN模型:RWKV,一个结合了RNN与Transformer双重优点的模型
聊天大模型的输出速度应该是多少?单张显卡最多可以支持多少个人同时聊天?来自贾扬清最新的讨论
斯坦福大学发布2023年人工智能指数报告——The AI Index 2023
CNN经典算法之Inception V1(GoogLeNet)
LM-SYS开源包含人类偏好的3.3万条真实对话语料:可用于RLHF的训练过程!
Artificial Analysis报告显示中国AI产业技术突破,已经与美国形成全球双极主导
好消息!3.11和3.12版本的Python将有巨大的性能提升!
阿里开源全模态大模型Qwen2.5-Omni-7B:支持文本、语音、视频、图像任意模态输入,可以实时生成文本或者语音,文本理解能力接近GPT-4o-mini,开源且免费商用