大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?
速度,2个月免费的GPT-4和Claude-2.1,PerplexityAI发布圣诞优惠~
如何使用git从GitHub上下载项目、更新远端项目并提交本地的更改
未经证实的GPT-4技术细节,关于GPT-4的参数数量、架构、基础设施、训练数据集、成本等信息泄露,仅供参考
苹果最新的M3系列芯片对于大模型的使用来说未来价值如何?结果可能不太好!M3芯片与A100算力对比!
LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!
阿里巴巴开源国内最大参数规模大语言模型——高达720亿参数规模的Qwen-72B发布!还有一个可以在手机上运行的18亿参数的Qwen-1.8B