标签为 #tokens# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

AI Agent工具调用token消耗太多不准确怎么办?Anthropic官方的大模型工具使用(MPC)优化:tokens消耗降低98.7%

让AI Agent通过编写代码来调用工具,而不是直接工具调用。这种方法利用了MCP(Model Context Protocol,模型上下文协议)标准,能显著降低token消耗,同时保持系统的可扩展性。下面,我结合原文的逻辑,分享我的理解和改写版本,目的是记录这个洞察,并为后续实验提供参考。Anthropic作为领先的AI研究机构,于2024年11月推出了MCP,这是一个开放标准,旨在简化AI Agent与外部工具和数据的连接,避免传统自定义集成的碎片化问题。

阅读 160

tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?

阅读 3318