DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:抽样
标签

「抽样」相关文章

汇总「抽样」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#抽样
如何抽取样本方差的分布

如何抽取样本方差的分布

抽取样本方差的分布可以帮助我们生成很多其他分布的样本,例如生成一元高斯分布的样本就是可以通过方差分布来产生。这篇博客将描述如何抽取样本方差的分布。

2017/10/20 15:43:116,648
#抽样#数学#方差
吉布斯抽样的一个简单理解

吉布斯抽样的一个简单理解

吉布斯抽样是贝叶斯推断中非常常用的方法。本文来自Cross Validated中一个人的回答。

2017/06/13 21:35:538,115
#抽样#统计#贝叶斯
HMC(Hamiltonian Monte Carlo抽样算法详细介绍)

HMC(Hamiltonian Monte Carlo抽样算法详细介绍)

HMC(Hamiltonian Monte Carlo抽样算法详细介绍)

2017-01-16 14:01:2210,722
#HMC#抽样
Author Topic Model[ATM理解及公式推导]

Author Topic Model[ATM理解及公式推导]

Author Topic Model[ATM理解及公式推导]

2017-01-13 11:38:433,998
#Gibbs抽样#TopicModel
LDA的Gibbs抽样详细推理与理解

LDA的Gibbs抽样详细推理与理解

LDA的Gibbs抽样详细推理与理解

2017-01-08 21:39:184,313
#Gibbs抽样#LDA
贝叶斯统计中的计算方法简介

贝叶斯统计中的计算方法简介

仿真抽样是给予贝叶斯方法第二春的重要角色。由于很多时候实际问题很复杂,我们无法精确求出后验密度,使用仿真抽样的方法我们可以获得近似的结果。这篇博客主要介绍了几种仿真抽样的方法。

2016-12-28 20:05:216,745
#MCMC#仿真#抽样方法

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

今日推荐

pandas的一些使用技巧微软开源最强38亿小规模参数大语言模型以及56亿参数规模全模态大模型,但是总体评测结果超过Qwen2.5-7B以及Llama3.1-8B等模型,接近GPT-4o mini。清除浮动方法的总结大规模中文开源数据集发布!2TB、几十亿条可商用的中文数据集书生·万卷 1.0开源~中文大模型能力可能要更上一层楼了!微软开源DeepSpeed Chat——一个端到端的RLHF的pipeline,可以用来训练类ChatGPT模型。高斯混合模型(GMM)为什么Python可以处理任意长度的整数运算——Python原理详解ItemCF--Python什么是推理大模型?DeepSeek R1推理大模型与DeepSeek V3模型的区别是什么?什么时候该使用推理大模型?变分推断之高斯混合模型(案例及代码)

最热博客

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介