DataLearner 标志DataLearnerAI
最新AI资讯
大模型评测
大模型列表
大模型对比
资源中心
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:MCMC
标签

「MCMC」相关文章

汇总「MCMC」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#MCMC
分解机(Factorization Machine, FM)模型简介以及如何使用SGD、ALS和MCMC求解分解机

分解机(Factorization Machine, FM)模型简介以及如何使用SGD、ALS和MCMC求解分解机

分解机

2017/11/04 09:27:249,315
#ALS#MCMC
机器学习中MCMC方法介绍

机器学习中MCMC方法介绍

有人把Metropolis算法当作是二十世纪最伟大的十大算法之一。这个算法是大规模抽样算法的一种,也叫做马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)。对于很多高维问题来说,比如计算一个凸体的体积,MCMC仿真是目前唯一可以在合理时间内解决这个问题的一般性方法。本文介绍了三种主流的MCMC算法,即MH算法、模拟退火算法和吉布斯抽样方法

2016-12-28 20:19:299,530
#GibbsSampling#MCMC
贝叶斯统计中的计算方法简介

贝叶斯统计中的计算方法简介

仿真抽样是给予贝叶斯方法第二春的重要角色。由于很多时候实际问题很复杂,我们无法精确求出后验密度,使用仿真抽样的方法我们可以获得近似的结果。这篇博客主要介绍了几种仿真抽样的方法。

2016-12-28 20:05:216,778
#MCMC#仿真

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 数据科学的Python——keras备忘录发布,含Keras的各种使用样例
  • 关于border
  • 重磅!ChatGLM2-6B免费商用了~
  • 重磅!学术论文处理预训练大模型GALACTICA发布!
  • R语言数据库操作(不定时更新)
  • 来自OpenAI官方的GPT-5编码提示词优化实践:6 条“更懂开发者”的提示工程技巧
  • 截至2022年4月份全球大语言模型一览图
  • 半导体市场概览