大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
尽管当前ChatGPT和GPT-4非常火热,但是高昂的训练成本和部署成本其实导致大部分个人、学术工作者以及中小企业难以去开发自己的模型。使得使用OpenAI的官方服务几乎成为了一种无可替代的选择。本文介绍的是一种低成本开发高效ChatGPT的思路,我认为它适合一些科研机构去做,也适合中小企业创新的方式。这里提到的思路涉及了一些最近发表的成果和业界的一些实践产出,大家可以参考!
OpenAI发布企业使用的ChatGPT:没有限制且更快的GPT-4、数据隔离、基于GPT-4的高级数据分析功能,但是暂不支持私有化部署
MMLU Pro大模型评测基准介绍:MMLU的进化版本,可以更好区分大模型普遍知识和推理能力的通用评测标准
HMC(Hamiltonian Monte Carlo抽样算法详细介绍)
LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!
Batch Normalization应该在激活函数之前使用还是激活函数之后使用?