DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:GPU
标签

「GPU」相关文章

汇总「GPU」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#GPU
各大企业和机构拥有的NVIDIA A100的GPU显卡数量

各大企业和机构拥有的NVIDIA A100的GPU显卡数量

Stateof.AI上周发布了最新的AI的报告中报告了当前各大企业和机构拥有的NVIDIA A100的GPU数量。A100是目前商用的最强大的GPU,对于超级计算机、大规模AI模型的训练和推理来说都十分重要。这里透露的各大企业的GPU数量也让我们可以看到各家的竞争情况。

2023/09/08 20:19:064,754
#A100#GPU
没有显卡也没关系!基于Google Colab免费GPU额度部署Stable Diffusion XL模型,可以生成4K的图!

没有显卡也没关系!基于Google Colab免费GPU额度部署Stable Diffusion XL模型,可以生成4K的图!

Stable Diffusion XL是StabilityAI最新的开源模型。是目前业界流行的免费开源图像生成大模型。2023年4月份StabilityAI就宣布了SD XL的存在并在2023年7月26日开源。SD XL相比较此前的模型速度更快、提示词更短、生成的图像更加真实。但是,大多数人可能并没有实际运行过,感受过这个模型的魅力。在这篇博客中,我们给大家展示如何利用Google Colab的免费GPU资源,部署一个SD XL模型,并通过prompt生成一些图片。

2023/08/17 23:30:441,907
#StableDiffusionXL#StableDiffusion教程
大模型微调过程中的几个常见问题

大模型微调过程中的几个常见问题

文中整理和总结了几个关于开源大模型微调方面的问题,答案主要来自gpt4 + google,如果其中部分问题的答案不准确,烦劳指正 (文中引用了外部资源链接,如果涉及版权问题,烦劳联系作者删除)

2023/08/04 12:02:501,540
#fine-tune#fp
总结一下截止2023年中旬全球主要厂商拥有的GPU数量以及训练GPT-3/LLaMA2所需要的GPU数量

总结一下截止2023年中旬全球主要厂商拥有的GPU数量以及训练GPT-3/LLaMA2所需要的GPU数量

GPU Utils最近总结了一个关于英伟达H100显卡在AI训练中的应用文章。里面透露总结了一些当前的主流厂商拥有的显卡数量以及一些模型训练所需的显卡数。文章主要描述的是H1000的供应与需求,也包含H100的性能描述,本文主要总结一下里面提到的显卡数相关统计供大家参考。

2023/08/04 11:11:482,016
#GPU#显卡数量
好消息~Kaggle提高了免费的GPU和内存等计算资源的使用额度!

好消息~Kaggle提高了免费的GPU和内存等计算资源的使用额度!

Kaggle是机器学习竞赛平台当之无愧的老大,除了提供了平台让企业和研究机构发布机器学习相关竞赛来让大家竞技和交流以外,他们还提供了免费的编程平台让大家使用免费的GPU和内存来训练模型和测试模型效果。而昨天,Kaggle升级了这些免费资源服务。

2022/10/20 21:50:414,443
#GPU#kaggle
一张图看全深度学习中下层软硬件体系结构

一张图看全深度学习中下层软硬件体系结构

这几年深度学习的发展给人工智能相关应用的落地带来了很大的促进。随着NLP、CV相关领域的算法的发展,算法层面的创新已经逐渐慢了下来,但是工程方面的研究依然非常火热。从底层的硬件的创新,到平台框架的发展,为支撑超大规模模型训练与移动端小规模算法推断而创造的软硬件体系也在飞速革新。本文将总结深度学习平台框架软件及下层的硬件支撑系统。

2021/06/12 12:20:514,133
#GPU#人工智能
基于GPU的机器学习Python库——RAPIDS简介及其使用方法

基于GPU的机器学习Python库——RAPIDS简介及其使用方法

随着深度学习的火热,对计算机算力的要求越来越高。从2012年AlexNet以来,人们越来越多开始使用GPU加速深度学习的计算。 然而,一些传统的机器学习方法对GPU的利用却很少,这浪费了很多的资源和探索的可能。在这里,我们介绍一个非常优秀的项目——RAPIDS,这是一个致力于将GPU加速带给传统算法的项目,并且提供了与Pandas和scikit-learn一致的用法和体验,非常值得大家尝试。

2019/07/06 10:58:4014,902
#GPU#机器学习
Ubuntu 命令行 指定GPU 运行 Python 程序

Ubuntu 命令行 指定GPU 运行 Python 程序

2018/12/19 10:59:446,680
#GPU#linux

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

今日推荐

  • 特征工程相关技术简介
  • KerasCV——一个新的简单易用的计算机视觉(CV)算法库
  • 大规模中文开源数据集发布!2TB、几十亿条可商用的中文数据集书生·万卷 1.0开源~中文大模型能力可能要更上一层楼了!
  • 谷歌提出最新的基于规则和机器学习混合的代码补全方法
  • MetaGPT技术全解析:另一个AutoGPT,一个可以替代小型软件开发团队的配备齐全的软件开发GPT,产品经理、系统设计、代码实现一条龙
  • 新的对话式语言模型可以将自然语言转换成可执行代码!
  • 2023年11月第四周的HuggingFace流行的十大开源大模型分析——多模态大模型和小规模模型爆发
并行计算中如何提高处理效率——来自Dask的提示