标签为 #MiniMax# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

你的MiniMax M2模型效果为什么不好?可能是用错了,官方建议正确使用Interleaved Thinking,模型效果最多可提升35%的效果

MiniMax M2发布2周后已经成为OpenRouter上模型tokens使用最多的模型之一。已经成为另一个DeepSeek现象的大模型了。然而,实际使用中,很多人反馈说模型效果并不好。而此时,官方也下场了,说当前大家使用MiniMax M2效果不好的一个很重要的原因是没有正确使用Interleaved Thinking。正确使用Interleaved thinking模式,可以让MiniMax M2模型的效果最多可以提升35%!本文我们主要简单聊聊这个Interleaved thinking。

阅读 166

MiniMaxAI开源MiniMax M2模型:Artificial Analysis评测显示综合智能得分超过Claude Opus 4.1,开源第一,全球第五。

MiniMax正式开源MiniMax M2模型,该模型定位是“Mini 模型,Max 编码与代理工作流”。最大的特点是2300亿总参数量,但是每次推理仅激活100亿,类似于10B模型。这款模型非常火爆,原因在于这么小的激活参数数量,推理速度很快,但是其评测结果非常优秀。

阅读 259

MiniMaxAI开源全球推理长度最长的推理大模型MiniMax-M1:100万tokens输入,最高支持80K的推理长度

MiniMaxAI于2025年6月17日正式发布了其新一代大模型——MiniMax-M1。MiniMax-M1的核心亮点在于结合了混合专家(MoE)架构和创新的闪电注意力(Lightning Attention)机制。MiniMax-M1不仅原生支持高达100万Token的上下文长度,推理的tokens也支持最高80K,是当前支持的最多推理长度的大模型。此外,MiniMax-M1在计算效率上也很高,例如在生成10万Token时,其FLOPs消耗仅为DeepSeek R1的25%!

阅读 415