DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: 训练技术
Tag

Articles tagged "训练技术"

A curated list of original AI and LLM articles related to "训练技术", updated regularly.

Tags:#训练技术
tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?

epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?

2023/05/31 00:33:363,468
#tokens#大语言模型#正则化
深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?

深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?

在深度学习训练中,由于数据太大,现在的训练一般是按照一个批次的数据进行训练。批次大小(batch size)的设置在很多论文或者教程中都提示要设置为$2^n$,例如16、32等,这样可能会在现有的硬件中获得更好的性能。但是,目前似乎没有人进行过实际的测试,例如32的batch size与33的batch size性能到底有多大差别?德国的Thomas Bierhance做了一系列实验,以验证批次大小设置为2的幂次方是不是真的可以加速。

2022/07/05 22:28:322,851
#深度学习#训练技术

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~Dirichlet Multinomial Mixture Model做短文本聚类(包括代码)Google发布第二代Gemini大语言模型,首个登场的Gemini 2 Flash Experimental,评测结果显示其能力已经超越上一代的Gemini 1.5 Pro!Scrapy网络爬虫实战[保存为Json文件及存储到mysql数据库]【转载】全面解读ICML 2017五大研究热点 | 腾讯AI Lab独家解析贝叶斯统计中的一些基本的概念和方法介绍阿里开源2个全新多模态理解大模型Qwen3-VL-4B和8B:主流评测结果超Gemini 2.5 Flash Lite、GPT-5 Nano,面向多模态Agent和机器人应用打造最强SQL代码生成开源大模型发布:DefogAI开源超过gpt-3.5-turbo的SQL生成大模型SQLCoder,免费商用授权~Zhipu AI重磅发布GLM-4.5系列:技术深度解析与多维度性能评测OpenAI CEO详解今明两年GPT发展计划:10万美元部署私有ChatGPT、最高支持100万tokens、建立微调模型应用市场

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介