大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Batch Normalization(BN)是深度学习领域最重要的技巧之一,最早由Google的研究人员提出。这个技术可以大大提高深度学习网络的收敛速度。简单来说,BN就是将每一层网络进行归一化,就可以提高整个网络的训练速度,并打乱训练数据,提升精度。但是,BN的使用可以在很多地方,很多人最大的困惑是放在激活函数之前还是激活函数之后使用,著名机器学习领域的博主Santiago总结了这部分需要注意的内容。
Batch Normalization(BN)是一种深度学习的layer(层)。它可以帮助神经网络模型加速训练,并同时使得模型变得更加稳定。尽管BN的效果很好,但是它的原理却依然没有十分清晰。本文总结一些相关的讨论,来帮助我们理解BN背后的原理。
OpenAI最新的推理大模型o1与GPT-4o有什么区别?o1一定比o1 mini更强吗?一文总结OpenAI对o1模型的官方答疑
指标函数(Metrics Function)和损失函数(Loss Function)的区别是什么?
关于OpenAI最新的营收和成本数据估算:包括ChatGPT Plus付费用户数以及OpenAI的月度成本等
扩散模型是如何工作的:从0开始的数学原理——How diffusion models work: the math from scratch
大模型追踪利器!斯坦福大学发布基础大模型追踪图谱Ecosystem Graphs