吉布斯抽样的一个简单理解
吉布斯抽样是贝叶斯推断中非常常用的方法。本文来自Cross Validated中一个人的回答。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
吉布斯抽样是贝叶斯推断中非常常用的方法。本文来自Cross Validated中一个人的回答。
科研小助手,帮助认识科研中常见缩写词和混淆词等,来自《机器学习导论》的专业词汇
HFUTUtils是一个工具程序集合,方便我们平时处理数据。针对文本处理的内容较多。使用起来非常简单。是本人平时使用Java处理数据时候写的工具,方便数据预处理的。
本文介绍了文本领域的相关任务和技术,探讨了循环神经网络在文本领域的优势,并进一步研究了应用在文本领域的卷积网络方法,原文地址:https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
这篇博客是AYLIEN上的一篇关于生成对抗网络的简单介绍,包含非常简洁的代码示例。是入门非常好的材料。
beta分布采样
R语言,面板数据,动态回归
word2vec的各种程序运行方法
gamma函数的相关程序
翻译自Wann-Jiun Ma的Deep Learning Meets Recommendation Systems,主要讲了推荐系统的基础算法以及使用深度学习对电影的海报进行近似计算,从而推荐相似的电影。
面板数据,即Panel Data,也叫“平行数据”,是指在时间序列上取多个截面,本文介绍了一个R语言处理面板数据的案例
我出生在一个不大不小的南方城市,那里纵横着大大小小的巷子,而通往我记忆深处的是寺巷子。
受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是G.Hinton教授的一宝。Hinton教授是深度学习的开山鼻祖,也正是他在2006年的关于深度信念网络DBN的工作,以及逐层预训练的训练方法,开启了深度学习的序章。其中,DBN中在层间的预训练就采用了RBM算法模型。RBM是一种无向图模型,也是一种神经网络模型。
人工神经网络,简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或者计算模型。其实是一种与贝叶斯网络很像的一种算法。之前看过一些内容始终云里雾里,这次决定写一篇博客。弄懂这个基本原理,毕竟现在深度学习太火了。
R的数据库连接、操作
学爬虫先学思想,思想掌握了,对应代码学习技术就so easy了~
Dirichlet Process and Stick-Breaking(DP的Stick-breaking 构造)
本文转自雷锋网,原文《通过从零开始实现一个感知机模型,我学到了这些》,作者:恒亮,文章转载已获授权。感知器(英语:Perceptron)是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络。它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类器。本文介绍了搭建感知机模型的基本操作也包含了作者的一些心得。
Hadoop(一)-HDFS
推荐中,有研究explict feedback,有研究implict feedback,今天就来谈谈这两种基本模型是怎么建的?其实,都是套路~
在我们给推荐问题建模时,神秘的正则化项L0、L1、L2的选择对模型很重要。为什么要加正则化?正则化有哪几种形式?到底该选择哪种正则化来建模呢?正则化项与推荐问题的关系?
使用Tensorflow的高级API - tf.contrib.learn 搭建一个DNN分类器