大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
本文转自雷锋网,原文《通过从零开始实现一个感知机模型,我学到了这些》,作者:恒亮,文章转载已获授权。感知器(英语:Perceptron)是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络。它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类器。本文介绍了搭建感知机模型的基本操作也包含了作者的一些心得。
基于算法的业务或者说AI的应用在这几年发展的很快。但是,在实际应用的场景中,我们经常会遇到一些非常奇怪的偏差现象。例如,Facebook将黑人标记为灵长类动物、城市图像识别系统将公交车上的董明珠形象广告识别为闯红灯的人等。算法系统出现偏差的原因有很多。本篇博客将总结在数据获取相关方面可能导致模型出现偏差的原因。
百川智能是前搜狗创始人王小川创立的一个大模型创业公司,主要的目标是提供大模型底座来提供各种服务。虽然成立很晚(在2023年4月份成立),但是三个月后便发布开源了Baichuan系列开源模型,并上架了Baichun-53B的大模型聊天服务。这些模型受到了广泛的关注和很高的平均。而2个月后,百川智能再次开源第二代baichuan系列大模型,其能力提升明显。
epoch是一个重要的深度学习概念,它指的是模型训练过程中完成的一次全体训练样本的全部训练迭代。然而,在LLM时代,很多模型的epoch只有1次或者几次。这似乎与我们之前理解的模型训练充分有不一致。那么,为什么这些大语言模型的epoch次数都很少。如果我们自己训练大语言模型,那么epoch次数设置为1是否足够,我们是否需要更多的训练?
在处理文本时,经常遇到超过1g存储的数据,直接简单的读取,可能遇到java空间不足的问题,为解决此问题,可将大文本数据按照行进行切分为很多块,并将每一块存储为一个文本
NVIDIA在2024年GPU技术大会(NVIDIA GPU Technology Conference,GTC)发布了全新的算力芯片和服务,即基于最新的Blackwell架构的算力芯片B200和GB200服务器。但是,大多数人对于NVIDIA芯片的升级只有数字的变化,本文将针对NVIDIA的GPU算力芯片做简单的介绍,并说明NVIDIA B200以及GB200的升级的地方。
自从Hadoop生态发展以来,基于开源软件提供服务的盈利公司也越来越多。大家这才发现,开源不仅不会削弱企业竞争力,还可以带来生态,增强企业的竞争力。本文总结全球最挣钱的十大开源公司供大家参考。
GGML是在大模型领域常见的一种文件格式。HuggingFace上著名的开发者Tom Jobbins经常发布带有GGML名称字样的大模型。通常是模型名+GGML后缀,那么这个名字的模型是什么?GGML格式的文件名的大模型是什么样的大模型格式?如何使用?本文将简单介绍。
SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS、CVS,它采用了分支管理系统,它的设计目标就是取代CVS。互联网上很多版本控制服务已从CVS迁移到Subversion。说得简单一点SVN就是用于多个人共同开发同一个项目,共用资源的目的。