大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
随着NLP预训练模型的发展,大语言模型在各个领域的作用也越来越大。几个月前,GitHub基于OpenAI的GPT-3训练的Copilot效果十分惊艳,可惜现在已经开始收费。而最近,清华大学也发布了一个代码补全神器——CodeGeeX。
OpenAI的o1模型是当前最强大的具有超强推理能力的大语言模型。但是,o1模型本身的能力如何,o1版本和o1-mini版本模型的差异在哪等似乎都很不清晰。为此,OpenAI在Twitter上举办了一次AMA(Ask me anything)活动,解答了很多大家关心的问题。在这篇博客中,我们根据这个讨论结果总结了一下其中比较重要的信息供大家参考。
使用Tensorflow的高级API - tf.contrib.learn 搭建一个DNN分类器
softmax作为多标签分类中最常用的激活函数,常常作为最后一层存在,并经常和交叉熵损失函数一起搭配使用。这里描述如何推导交叉熵损失函数的推导问题。
大模型的长输入在很多场景下都有非常重要的应用,如代码生成、故事续写、文本摘要等场景,支撑更长的输入通常意味着更好的结果。昨天,斯坦福大学、加州伯克利大学和Samaya AI的研究人员联合发布的一个论文中有一个非常有意思的发现:当相关信息出现在输入上下文的开始或结束时,大模型的性能通常最高,而当大模型必须访问长上下文中间的相关信息时,性能显著下降。本文将简单介绍一下这个现象。
平衡二叉树(Balanced Binary Tree)是二叉树(Binary Tree)中最重要的一种树结构。由于它保证了一个良好的二叉树形结构,使得其查找、搜索和删除等操作的效率大大提高,是应用最广泛的二叉树。
OpenAI在2023年8月份发布了GPT-3.5的微调接口,并表示会在2023年秋天开放16K的gpt-3.5-turbo-16k模型和GPT-4的微调(参考:[重磅!GPT-3.5可以微调了!OpenAI发布GPT-3.5 Turbo微调接口](https://www.datalearner.com/blog/1051692752268726 "重磅!GPT-3.5可以微调了!OpenAI发布GPT-3.5 Turbo微调接口"))。然而,微调并不是一个简单的问题,如何对大模型微调以及如果微调出现问题
二叉树数据结构中一类重要的数据结构,也是树表家族最为基础的结构。二叉树每个节点最多具有两个子节点。本篇博客将简述二叉树原理和应用。
交叉验证是一种用于估计机器学习模型性能的统计方法。它是一种评估统计分析结果如何推广到独立数据集的方法。简单来说,就是将数据集分成不同的部分,然后某些部分训练,某些部分测试,某些部分验证,这样可以最大程度避免过拟合以及测试模型在陌生数据集的性能。
在2020年的亚马逊reInvent发布会上,亚马逊正式发布了一项新的服务,即Amazon SageMaker Feature Store,中文简介是适用于机器学习特征的完全托管的存储库。 Feature Store是这两年兴起的另一个关于人工智能系统的基础设施,应该也是未来几年最重要的人工智能基础设施之一。本文将介绍一下Feature Store是什么以及为什么很多企业开始推广这个东西。
GLM4是智谱AI发布的第四代基座大语言模型,全称General Language Model,最早由清华大学KEG小组再2021年发布。这个基座模型也是著名的开源国产大模型ChatGLM系列的基座模型。本次发布的第四代GLM4的能力相比此前的基座模型提升了60%,已经与世界最强模型Gemini Ultra和GPT-4接近!