大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
AdaBoost,全称是“Adaptive Boosting”,由Freund和Schapire在1995年首次提出,并在1996发布了一篇新的论文证明其在实际数据集中的效果。这篇博客主要解释AdaBoost的算法详情以及实现。它可以理解为是首个“boosting”方式的集成算法。是一个关注二分类的集成算法。
高斯混合模型是一个参数概率密度函数,它是一组高斯密度函数的加权求和。在生物统计领域,高斯混合模型通常是连续测度或者特征的概率分布的参数模型。高斯混合模型可以使用迭代的EM算法或者最大后验概率法估计参数。
EM(expectation-maximization)算法是统计学中求统计模型的最大似然和最大后验参数估计的一种迭代式算法,模型一般是依赖于不可观测的潜在变量。
之前面的博客中,我们已经描述了基本的RNN模型。但是基本的RNN模型有一些缺点难以克服。其中梯度消失问题(Vanishing Gradients)最难以解决。为了解决这个问题,GRU(Gated Recurrent Unit)神经网络应运而生。本篇博客将描述GRU神经网络的工作原理。GRU主要思想来自下面两篇论文:
卷积神经网络是图像识别领域最重要的深度学习技术。也可以说是是本轮深度学习浪潮开始点。本文总结了CNN的三种高级技巧,分别是空洞卷积、显著图和反卷积技术。
使用预训练模型处理NLP任务是目前深度学习中一个非常火热的领域。本文总结了8个顶级的预训练模型,并提供了每个模型相关的资源(包括官方文档、Github代码和别人已经基于这些模型预训练好的模型等)。
大规模的text-to-image模型没有公开预训练结果,OpenAI的意思就是我这玩意太厉害,随便放出来可能会被你们做坏事,而谷歌训练这个应该就是为了云服务挣钱,所以都没有公开可用的版本供大家玩耍。虽然业界有基于论文的实现,但是训练模型需要耗费大量的资源,没有开放的预训练结果,我们普通个人也很难玩起来。但是,大神Sahar提供了一个免费使用开源实现的text-to-image预训练模型的方式。
随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。
pandas.get_dummies是pandas中一种非常高效的方法。它最主要的作用是可以将分类变量转变成dummy变量,也就是虚拟变量。这篇博客将简要的介绍一下pandas.get_dummies()方法,并描述其在机器学习中的应用的一些注意事项。
很多童鞋在查询期刊的时候会发现某些期刊不是SCI(SCIE)索引,而是一个叫ESCI的索引。这似乎有点像SCI,但好像又有区别,所以大家会有疑问,本篇博客将解释二者的区别。
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用