标签为 #gpu# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

各大企业和机构拥有的NVIDIA A100的GPU显卡数量

Stateof.AI上周发布了最新的AI的报告中报告了当前各大企业和机构拥有的NVIDIA A100的GPU数量。A100是目前商用的最强大的GPU,对于超级计算机、大规模AI模型的训练和推理来说都十分重要。这里透露的各大企业的GPU数量也让我们可以看到各家的竞争情况。

阅读 4620

没有显卡也没关系!基于Google Colab免费GPU额度部署Stable Diffusion XL模型,可以生成4K的图!

Stable Diffusion XL是StabilityAI最新的开源模型。是目前业界流行的免费开源图像生成大模型。2023年4月份StabilityAI就宣布了SD XL的存在并在2023年7月26日开源。SD XL相比较此前的模型速度更快、提示词更短、生成的图像更加真实。但是,大多数人可能并没有实际运行过,感受过这个模型的魅力。在这篇博客中,我们给大家展示如何利用Google Colab的免费GPU资源,部署一个SD XL模型,并通过prompt生成一些图片。

阅读 1772

总结一下截止2023年中旬全球主要厂商拥有的GPU数量以及训练GPT-3/LLaMA2所需要的GPU数量

GPU Utils最近总结了一个关于英伟达H100显卡在AI训练中的应用文章。里面透露总结了一些当前的主流厂商拥有的显卡数量以及一些模型训练所需的显卡数。文章主要描述的是H1000的供应与需求,也包含H100的性能描述,本文主要总结一下里面提到的显卡数相关统计供大家参考。

阅读 1909

一张图看全深度学习中下层软硬件体系结构

这几年深度学习的发展给人工智能相关应用的落地带来了很大的促进。随着NLP、CV相关领域的算法的发展,算法层面的创新已经逐渐慢了下来,但是工程方面的研究依然非常火热。从底层的硬件的创新,到平台框架的发展,为支撑超大规模模型训练与移动端小规模算法推断而创造的软硬件体系也在飞速革新。本文将总结深度学习平台框架软件及下层的硬件支撑系统。

阅读 4011

基于GPU的机器学习Python库——RAPIDS简介及其使用方法

随着深度学习的火热,对计算机算力的要求越来越高。从2012年AlexNet以来,人们越来越多开始使用GPU加速深度学习的计算。 然而,一些传统的机器学习方法对GPU的利用却很少,这浪费了很多的资源和探索的可能。在这里,我们介绍一个非常优秀的项目——RAPIDS,这是一个致力于将GPU加速带给传统算法的项目,并且提供了与Pandas和scikit-learn一致的用法和体验,非常值得大家尝试。

阅读 14794