DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
Original Blog

Original AI Tech Blogs

Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

Sort by
Sort by DateSort by Views
Tensorflow中数据集的使用方法(tf.data.Dataset)

Tensorflow中数据集的使用方法(tf.data.Dataset)

Tensorflow中tf.data.Dataset是最常用的数据集类,我们也使用这个类做转换数据、迭代数据等操作。本篇博客将简要描述这个类的使用方法。

2019/06/22 16:04:2413,910
#python#tensorflow
使用卷积神经网络进行手写识别

使用卷积神经网络进行手写识别

本文是发在Medium上的一篇博客:《Handwritten Equation Solver using Convolutional Neural Network》。本文是原文的翻译。这篇文章主要教大家如何使用keras训练手写字符的识别,并保存训练好的模型到本地,以及未来如何调用保存到模型来预测。

2019/06/23 22:35:533,584
#卷积神经网络#深度学习
标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法

标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法

在2016年,Szegedy等人提出了inception v2的模型(论文:Rethinking the inception architecture for computer vision.)。其中提到了Label Smoothing技术,可以提高模型效果。

2019/06/25 17:27:2412,381
#深度学习
神器!AI硬件基准测试库发布

神器!AI硬件基准测试库发布

2019/06/30 21:14:312,756
#人工智能
数据科学的Python——keras备忘录发布,含Keras的各种使用样例

数据科学的Python——keras备忘录发布,含Keras的各种使用样例

2019/07/02 22:14:462,598
#keras#深度学习
基于GPU的机器学习Python库——RAPIDS简介及其使用方法

基于GPU的机器学习Python库——RAPIDS简介及其使用方法

随着深度学习的火热,对计算机算力的要求越来越高。从2012年AlexNet以来,人们越来越多开始使用GPU加速深度学习的计算。 然而,一些传统的机器学习方法对GPU的利用却很少,这浪费了很多的资源和探索的可能。在这里,我们介绍一个非常优秀的项目——RAPIDS,这是一个致力于将GPU加速带给传统算法的项目,并且提供了与Pandas和scikit-learn一致的用法和体验,非常值得大家尝试。

2019/07/06 10:58:4014,898
#GPU#机器学习
100天搞定机器学习(100-Days-Of-ML)(一)数据预处理

100天搞定机器学习(100-Days-Of-ML)(一)数据预处理

2019/07/06 20:46:503,892
#机器学习
时间序列数据处理中的相关数学概念

时间序列数据处理中的相关数学概念

时间序列数据分析的基础包含大量的统计知识。这篇博客主要用通俗的语言描述时间序列数据中涉及到的一些基本统计知识。

2019/07/09 14:50:203,873
#时间序列数据#统计
数据预处理中的高频词与低频词

数据预处理中的高频词与低频词

在自然语言数据预处理阶段,为了提取更有用的信息,对数据必须进行相应处理。本文重点介绍对于高频词与低频词的处理。

2019/07/16 21:50:546,302
#文本处理
发现新大陆!(申请领地)

发现新大陆!(申请领地)

这是一个新大陆,有博客园,算法区,技术堡,论文馆,数据林,工具库。尽情畅游吧!

2019/07/23 14:57:492,396
#myself#newmainland
Java类型转换中valueOf方法和parseInt方法的区别

Java类型转换中valueOf方法和parseInt方法的区别

在Java的类型转换中,我们经常会使用valueOf或者parseInt(parseFloat/parseDouble等)来转换。这二者有什么区别呢?这里简要介绍一下。

2019/08/17 17:13:264,732
#Java#编程
深度学习技巧之Batch Normalization

深度学习技巧之Batch Normalization

Batch Normalization是深度学习中最重要的技巧之一。是由Sergey Ioffe和Christian Szeged创建的。Batch Normalization使超参数的搜索更加快速便捷,也使得神经网络鲁棒性更好。本篇博客将简要介绍相关概念和原理。

2019/08/18 15:52:575,068
#coursera#深度学习
softmax作为输出层激活函数的反向传播推导

softmax作为输出层激活函数的反向传播推导

softmax作为多标签分类中最常用的激活函数,常常作为最后一层存在,并经常和交叉熵损失函数一起搭配使用。这里描述如何推导交叉熵损失函数的推导问题。

2019/08/25 15:09:335,427
#python#人工智能
Java中自增操作i++与++i的区别

Java中自增操作i++与++i的区别

在Java中,自增是一种非常常见的操作,在自增中,有两种写法,一种是前缀自增(++i),一种是后缀自增(i++)。这里主要简单介绍两种自增的差别。

2019/09/07 15:17:283,082
#java#编程
TensorFlow中常见的错误解释及解决方法

TensorFlow中常见的错误解释及解决方法

TensorFlow中常见的错误解释及解决方法

2019/11/01 11:21:1510,234
#keras#tensorflow
一个基于Python的机器学习项目——各种Kaggle比赛的解决方案

一个基于Python的机器学习项目——各种Kaggle比赛的解决方案

2019/11/03 12:02:162,973
#<span class='blog_tag'><a href='blog_list#tag
Scikit-Learn最新更新简介

Scikit-Learn最新更新简介

Scikit-Learn有很优秀的机器学习处理思想,包括TensorFlow等新框架都借鉴了它的设计思想。最近的更新也让Scikit-Learn更加强大。在描述这个更新之前我们先简单看一下历史,然后让我们一起看看都有什么新内容吧。

2020/02/12 22:33:363,824
#sk-learn#人工智能
考虑价格和促销影响的销售预测算法实践

考虑价格和促销影响的销售预测算法实践

这是一篇来自Towards Data Science上面的一篇个人实践分享,主要是针对销量进行预测。一般来说,销量受到价格、季节等因素影响较大。这里就是考虑这些因素进行的一个实践。值得大家一试。这里我们翻译一下,并对其中的某些工作做一些简单的解释。

2020/02/15 18:16:565,053
#Prophet#python
Git提交本地文件

Git提交本地文件

Git操作记录

2020/03/20 09:33:302,023
#git#svn
Pandas的DataFrame选择行或者列的注意事项

Pandas的DataFrame选择行或者列的注意事项

Pandas中的DataFrame选择某些行和某些列是有很多中操作和选择的,不太容易记,这里整理一下。

2020/03/23 11:48:148,165
#pandas#python
122

122

221

2020/03/23 17:20:353,459
#122112
Dask的本地集群配置和编程

Dask的本地集群配置和编程

Dask提供了多种分布式调度器,当缺少多台服务器时候,也可以通过本地集群来实现单机分布式的计算。这篇博客主要就是介绍如何实现Dask的单机分布式调度器。第一小节是简介,第二节是单机调度器的简写版本,第三节是单机调度器的完整版本,第四节是使用的一些示例。

2020/03/31 14:25:105,287
#Dask#Python
并行计算中如何提高处理效率——来自Dask的提示

并行计算中如何提高处理效率——来自Dask的提示

当数据量达到一定程度,单机的处理能力会无法达到性能的要求,采用并行计算,并利用多台服务器进行分布式处理可能会提升数据处理的速度,达到性能要求。然而如果使用不当,并行处理可能并不会提升处理的速度。这篇博客介绍了Dask中关于并行处理的一些效率方面的建议,尽管是针对Dask的说明,但对于所有的并行处理来说都是适用的。

2020/03/31 15:43:314,250
#Dask#Python
通过命令行的方式建立Dask集群

通过命令行的方式建立Dask集群

Dask的集群启动创建也很简单,有好几种方式,最简单的是采用官方提供dask-scheduler和dask-worker命令行方式。本文描述如何使用命令行方法建立Dask集群。

2020/05/06 11:41:093,609
#dask#python
Previous
1...111213...39
Next

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Hot Blogs

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

Today's Picks

  • 神秘的图片生成和编辑大模型Nano Banana是什么?背后是Google吗?什么时候发布?能否颠覆Adobe
  • 重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!
  • 高斯混合模型(GMM)
  • 清华大学ChatGLM团队发布AI Agent能力评测工具AgentBench:GPT-4一骑绝尘,chatglm2表现优秀,baichuan-7b排名倒数!
  • 不更改一行AI模型的代码加速你的模型训练过程——AI模型训练加速库Nebulgym简介
  • beta分布的采样或抽样(java程序)
  • 如何理解狄利克雷过程(Dirichlet Process)
  • 大模型评测的新标杆:超高难度的“Humanity’s Last Exam”(HLE)介绍