
AI编码领域的转变:Karpathy的2026年反思与Boris Cherny的Claude Code团队回应
Andrej Karpathy预测2026年AI将主导软件编码工作流,带来巨大效率提升,但可能引发低质代码泛滥(slopacolypse)。Anthropic的Boris Cherny以Claude Code团队实践回应,展示近100% AI生成代码、通用工程师招聘策略,以及通过模型迭代有效控制质量问题。
加载中...

Andrej Karpathy预测2026年AI将主导软件编码工作流,带来巨大效率提升,但可能引发低质代码泛滥(slopacolypse)。Anthropic的Boris Cherny以Claude Code团队实践回应,展示近100% AI生成代码、通用工程师招聘策略,以及通过模型迭代有效控制质量问题。

本文整理了 Andrej Karpathy 在 2025 年底关于 AI Agent 编程的核心观点。基于其使用 Claude Code 等大模型的真实工程经验,Karpathy 认为软件工程正从“手动编码”转向“由 AI Agent 执行、人类定义目标与约束”的新范式。文章同时分析了 AI Agent 在效率提升之外带来的工程风险、技能退化与内容质量问题,并指出 2026 年将是行业系统性消化 AI Agent 能力的关键一年。

就在大家还在争论 AI 编程上限的时候,Cursor 团队发布了一份非常值得大家关注的内部测试报告,展示了当我们将 Agent 的规模和运行时间推向极致时,会发生什么。这不仅仅是简单的代码生成,而是让 AI 像人类团队一样协作,构建百万行级别的项目。这项实验为我们揭示了 AI 在编码领域的潜力与局限,值得每位开发者关注。

MiniMax正式开源MiniMax M2模型,该模型定位是“Mini 模型,Max 编码与代理工作流”。最大的特点是2300亿总参数量,但是每次推理仅激活100亿,类似于10B模型。这款模型非常火爆,原因在于这么小的激活参数数量,推理速度很快,但是其评测结果非常优秀。

Scale AI 于 2025 年 9 月 21 日发布了 SWE-Bench Pro,这是一个针对 AI 代理在软件工程任务上的评估基准。该基准包含 1,865 个问题,来源于 41 个活跃维护的代码仓库,聚焦企业级复杂任务。现有模型在该基准上的表现显示出显著差距,顶级模型的通过率低于 25%,而最近的榜单更新显示部分模型已超过 40%。这一发布旨在推动 AI 在长时程软件开发中的应用研究。

近年来,AI 编码助手与 Agent 框架层出不穷,从 Github Copilot 到 Cursor,再到各种基于 LangChain 的多代理方案。然而,真正让开发者普遍感受到“顺手”与“愉快”的,却是 Claude Code(简称 CC)。它的特别之处,并不在于引入了复杂的新架构,而恰恰在于其极简而精心打磨的设计选择。 Claude模型本身的强大毋庸置疑,但是即使是相同的模型,Claude Code体验也比其它的Agent似乎体验更好。本文基于2025年8月21日vivek公开发布的一篇英文博客,

Aider 是一个在终端里进行结对编程的开源工具。为评估不同大模型在“按照指令对代码进行实际可落地的编辑”上的能力,Aider 提出并维护了公开基准与排行榜,用于比较模型在无人工干预下完成代码修改任务的可靠性与成功率。该评测已被多家模型提供方在技术说明中引用,用作代码编辑与指令遵循能力的对照指标。

2024年,美国数学邀请赛(AIME)成为评估大型语言模型(LLM)数学推理能力的重要基准。AIME是一项备受尊崇的考试,包含15道题,考试时间为3小时,旨在考察美国顶尖高中生在各类数学领域的复杂问题解决能力。

在人工智能领域,随着大型语言模型(LLMs)在各类任务中的表现不断提升,评估这些模型的实际能力变得尤为重要。尤其是在软件工程领域,AI 模型是否能够准确地解决真实的编程问题,是衡量其真正应用潜力的关键。而在这方面,OpenAI 推出的 *SWE-bench Verified* 基准测试,旨在提供一个更加可靠和精确的评估工具,帮助开发者和研究者全面了解 AI 模型在处理软件工程任务时的能力。

随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。

随着大型语言模型(LLM)能力的飞速发展,如何科学、准确地评估其性能,特别是深度的逻辑推理和代码生成能力,已成为人工智能领域的一大挑战。传统的评测基准在面对日益强大的模型时,逐渐暴露出数据污染、难度不足、无法有效评估真实推理能力等问题。在这一背景下,一个旨在检验模型竞赛级编程水平的评测基准——Codeforces应运而生,为我们提供了一个更严苛、更接近人类程序员真实水平的竞技场。

阿里宣布开源第三代编程大模型Qwen3-Coder-480B-A35B,该模型是Qwen3编程大模型中第一个开源的版本,同时官方还基于Google的Gemini CLI改造并开源了阿里自己的命令行编程工具Qwen Code,完全免费使用。

Kiro 是一款AWS刚发布的、具有代理(agentic)能力的集成开发环境(IDE),它的目的是希望通过简化的开发者体验,帮助开发者从概念原型无缝过渡到生产级别的应用。它的核心理念是“规格驱动开发”(spec-driven development),以解决当前 AI 编程从有趣的原型到可靠的生产系统之间存在的鸿沟。

编程领域大模型一直是进展非常快的大模型领域。因为编程能力更强的模型,通常在逻辑思维、工具调用上有更好的表现,在很多领域,特别是Agent领域有很大的应用价值。今天法国人工智能明星公司MistralAI发布了2个全新的编程大模型,分别是Devstral Medium和 Devstral Small 1.1,后者是一个开源的240亿参数的编程大模型。

“Vibe Coding”(氛围编程)是一种新兴的编程范式,强调通过自然语言与人工智能(AI)协作开发软件。该概念由前 OpenAI 研究员 Andrej Karpathy 于 2025 年提出,旨在让开发者沉浸于创作氛围中,利用 AI 的能力,将自然语言描述转化为实际源代码,从而简化编程过程。

LiveCodeBench 由加州大学伯克利分校、麻省理工学院和康奈尔大学的研究人员开发,是一个先进的评测基准套件,专门用于严格评估大语言模型 (LLMs) 在代码处理方面的能力,并解决现有基准测试的局限性。通过引入实时更新的问题集和多维度评估方法,LiveCodeBench 确保对 LLM 进行公平、全面和稳健的评估。

在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。

编程大模型是当前大语言模型里面最重要的一类。一般是基础大模型在预训练之后,加入代码数据集继续训练得到。在代码补全、代码生成方面一般强于常规的大语言模型。阿里最新开源的70亿参数大模型CodeQwen1.5-7B在HumanEval评测结果上超过了GPT-4早期版本,表现异常地好!

大多数编程领域的大模型应用都是单行代码补全或者单个函数生成的方式。完整的程序生成依然面临较大的挑战。而现在,一个初创企业直接发布了一个AI软件工程师,可以直接作为一个程序员来接受用户需求和反馈,独立完成编码和应用上线功能。这就是Cognition发布的全球首个AI软件工程师Devin。

在近年来,随着人工智能技术的飞速发展,大型语言模型(LLM)在代码生成和编辑领域的应用越来越广泛,成为软件开发中不可或缺的助手。今天,我想向大家介绍一个由BigCode项目与Software Heritage合作开发的下一代代码大型语言模型——StarCoder 2。

MetaAI发布的LLaMA系列开源大语言模型已经是开源大模型领域最重要的力量了。相当多的所谓开源大模型都是基于这个模型微调得到。在上个月,LLaMA2发布,吸引了全球非常多的关注,也有相当多的后续模型基于LLaMA2进行优化。而今天MetaAI再次开源全新的编程大模型——CodeLLaMA系列,这是MetaAI第一次发布编程大模型,本次发布的CodeLLaMA共有9个版本,分别是CodeLLaMA系列、针对Python优化的CodeLLaMA-Python系列和针对指令优化的CodeLLaMA-Inst

据传,Meta公司即将推出一款名为Code LLaMA的开源AI模型,用于生成编程代码。这一新模型被视为与OpenAI的Codex模型竞争的产品,并建立在Meta最近发布的LLaMA 2上。以下是关于这一新技术的详细分析。

SQLCoder 是 Defog 团队推出的一款前沿的语言模型,专门用于将自然语言问题转化为 SQL 查询。这是一个拥有150亿参数的模型,其性能略微超过了 gpt-3.5-turbo 在自然语言到 SQL 生成任务上,并且显著地超越了所有流行的开源模型。更令人震惊的是,尽管 SQLCoder 的大小只有 text-davinci-003 的十分之一,但其性能却远超后者。

华为盘古大模型一直是国内大模型领域比较早的先行者,不过由于该模型并不针对个人开放,因此很少有人可以体验到该模型的效果。但是,盘古大模型一直在不断发展。2023年7月27日,华为发布最新的论文,展示了新一代盘古大模型的编程能力。该模型名字为PanGu-Coder2,论文的数据显示该模型目前超越所有开源编程大模型的效果,也超过GPT-3.5,接近GPT-4。