DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
Original Blog

Original AI Tech Blogs

Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

Sort by
Sort by DateSort by Views
在线广告的紧凑分配方案(Optimal Online Assignment with Forecasts)

在线广告的紧凑分配方案(Optimal Online Assignment with Forecasts)

广告分配问题属于运筹中的优化问题。一般情况下,我们期望有个最大化收益,但同时需要保证合约的完成。因此,这是一个带不等式约束的最优化问题。由于广告数量和用户数量很多,因此,求解的难度很高。在这篇文章中,作者推导了原问题的拉格朗日函数的系数之间的关系,大大降低了求解的难度。这里将简要介绍原理和推导过程。

2019/02/28 15:59:054,516
#在线广告#展示广告
对偶规划问题

对偶规划问题

对偶问题(Dual Problem)是运筹学中一个很重要的概念,是基于原问题的约束条件和目标函数为基础构造而来。每一个线性规划的问题都存在一个与之对应的对偶问题。对偶问题在求解最优化问题时很有用。

2019/02/28 15:02:596,668
#广告分配#线性规划
最优化问题的KKT条件简要解释

最优化问题的KKT条件简要解释

KKT条件(Karush–Kuhn–Tucker conditions)是求解带不等式约束的最优化问题中非常重要的一个概念和方法。这篇博客将解释相关概念和操作。

2019/02/28 15:02:3613,995
#KKT条件#拉格朗日算子
深度学习的标准符号表示

深度学习的标准符号表示

深度学习中的符号很多,但是大多数情况下,大家都使用同一套符号来表示。这篇博客主要以一个简单的神经网络为例,说明深度学习的标准符号以及相关的维度表示。主要来源是吴恩达的coursera课程。

2019/02/21 20:16:408,704
#深度学习
深度学习技术之池化(Pooling)

深度学习技术之池化(Pooling)

2019/02/21 10:43:184,914
#coursera#深度学习
深度学习技巧之Padding

深度学习技巧之Padding

卷积神经网络是深度学习中处理图像的利器。在卷积神经网络中,Padding是一种非常常见的操作。本片博客将简要介绍Padding的原理。

2019/02/20 15:22:487,058
#卷积神经网络#深度学习
gluon模型因Intert链接问题无法下载怎么办

gluon模型因Intert链接问题无法下载怎么办

gluon模型无法下载

2019/02/15 14:52:562,053
#<span class='blog_tag'><a href='blog_list#tag
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

2019/02/14 15:46:1012,186
#变分推断#指数分布族
变分推断之高斯混合模型(案例及代码)

变分推断之高斯混合模型(案例及代码)

变分推断以及高斯混合模型应用

2019/02/14 15:44:168,390
#变分推断#高斯混合模型
Ubuntu 命令行 指定GPU 运行 Python 程序

Ubuntu 命令行 指定GPU 运行 Python 程序

2018/12/19 10:59:446,679
#GPU#linux
机器学习(人工智能)在工业中应用步骤入门

机器学习(人工智能)在工业中应用步骤入门

机器学习是实现人工智能最重要的方法之一,包括深度学习等都属于机器学习中的一种方法。因此,机器学习的应用被认为是实现人工智能应用的重要途径。人工智能的应用目标是使用计算机(机器)来代替或者辅助人工来完成某项任务。机器学习在解决业务问题的应用需要谨慎考虑。本文提供一些步骤可以参考。

2018/11/20 11:37:043,758
#人工智能#机器学习
使用sklearn做高斯混合聚类(Gaussian Mixture Model)

使用sklearn做高斯混合聚类(Gaussian Mixture Model)

2018/11/01 19:21:5114,996
#python#聚类
Pycharm更改内存设置

Pycharm更改内存设置

2018/10/31 15:39:589,895
#IDE#pycharm
使用Python的sklearn包做kmeans

使用Python的sklearn包做kmeans

2018/10/31 14:42:149,623
#kmeans#python
使用R语言进行K-means聚类并分析结果

使用R语言进行K-means聚类并分析结果

R语言进行数据分析非常简单方便,在这篇博客中,我们将描述如何使用R语言进行K-means聚类分析,并分析结果。

2018/10/31 14:25:2262,397
#K-means#R语言
线性数据结构之跳跃列表(Skip List)详解及其Java实现

线性数据结构之跳跃列表(Skip List)详解及其Java实现

数据结构中,自平衡二叉查找树搜索效率高,但是需要通过旋转和变色维护平衡。而列表虽然简单,但是对元素的查找需要比对列表中的每个元素,查找速度较慢。为了兼顾列表的简单易用,并提高查找效率,跳跃列表(Skip List)应运而生。

2018/10/31 11:18:483,259
#列表#数据结构
平衡二叉树之红黑树(Red-Black Tree)简介及Java实现

平衡二叉树之红黑树(Red-Black Tree)简介及Java实现

红黑树(Red-Black Tree)也是一种自平衡二叉查找树,与AVL不同的是它依靠节点颜色来维护树的平衡,在自平衡操作的时候,依赖变色和旋转两种操作来进行。

2018/10/27 11:01:092,593
#二叉树#数据结构
平衡二叉树之AVL树(Adelson-Velsky and Landis Tree)简介及Java实现

平衡二叉树之AVL树(Adelson-Velsky and Landis Tree)简介及Java实现

在前面的内容中,我们已经介绍了平衡二叉树。其中提到了AVL树,这是一种非常著名的平衡二叉树。这是第一个发明类似自平衡机制的二叉树数据结构。在AVL树中,任何节点的两个子树的高度最多相差一个。如果在任何时候它们相差多于一个,则重新平衡以恢复此属性。

2018/10/27 09:30:014,610
#二叉树#数据结构
二叉查找树(Binary Search Trees,BST)数据结构详解

二叉查找树(Binary Search Trees,BST)数据结构详解

二叉查找树是一种特殊的二叉树结构,它改善了二叉树的查找效率,二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。与一般的二叉树的主要区别就是它对子节点的键值排序有一定要求。

2018/10/25 17:12:344,900
#二叉树#数据结构
二叉树(Binary Tree)

二叉树(Binary Tree)

二叉树数据结构中一类重要的数据结构,也是树表家族最为基础的结构。二叉树每个节点最多具有两个子节点。本篇博客将简述二叉树原理和应用。

2018/10/25 17:12:105,474
#二叉树#数据结构
平衡二叉树(Balanced Binary Tree)

平衡二叉树(Balanced Binary Tree)

平衡二叉树(Balanced Binary Tree)是二叉树(Binary Tree)中最重要的一种树结构。由于它保证了一个良好的二叉树形结构,使得其查找、搜索和删除等操作的效率大大提高,是应用最广泛的二叉树。

2018/10/25 17:10:445,449
#二叉树#数据结构
z-index

z-index

2018/10/19 22:32:282,289
#z-index
定位

定位

2018/10/19 22:15:362,585
#<span class='blog_tag'><a href='blog_list#tag
background综合属性

background综合属性

2018/10/15 21:04:042,365
#background
Previous
1...293031...39
Next

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Hot Blogs

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

Today's Picks

  • Keras中predict()方法和predict_classes()方法的区别
  • 重磅!阿里开源第三代千问大模型:Qwen3系列,最小仅6亿参数规模,最大2350亿参数规模大模型!可以根据问题难度自动选择是否带思考过程的大模型,评测超DeepSeek-R1和OpenAI o3
  • AI大模型领域的热门技术——Embedding入门介绍以及为什么Embedding在大语言模型中很重要
  • Java入门基础笔记-4
  • Git提交本地文件
  • 腾讯发布全新推理大模型Hunyuan-T1:mamba与transformer结合的新架构,与业界模型对比评测结果不错,但是不开源
  • 2022年被引次数最多的AI论文列表
  • 好消息!3.11和3.12版本的Python将有巨大的性能提升!