用户 小木 的博客
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
最新博客
使用R语言进行K-means聚类并分析结果
R语言进行数据分析非常简单方便,在这篇博客中,我们将描述如何使用R语言进行K-means聚类分析,并分析结果。
线性数据结构之跳跃列表(Skip List)详解及其Java实现
数据结构中,自平衡二叉查找树搜索效率高,但是需要通过旋转和变色维护平衡。而列表虽然简单,但是对元素的查找需要比对列表中的每个元素,查找速度较慢。为了兼顾列表的简单易用,并提高查找效率,跳跃列表(Skip List)应运而生。
平衡二叉树之红黑树(Red-Black Tree)简介及Java实现
红黑树(Red-Black Tree)也是一种自平衡二叉查找树,与AVL不同的是它依靠节点颜色来维护树的平衡,在自平衡操作的时候,依赖变色和旋转两种操作来进行。
平衡二叉树之AVL树(Adelson-Velsky and Landis Tree)简介及Java实现
在前面的内容中,我们已经介绍了平衡二叉树。其中提到了AVL树,这是一种非常著名的平衡二叉树。这是第一个发明类似自平衡机制的二叉树数据结构。在AVL树中,任何节点的两个子树的高度最多相差一个。如果在任何时候它们相差多于一个,则重新平衡以恢复此属性。
二叉查找树(Binary Search Trees,BST)数据结构详解
二叉查找树是一种特殊的二叉树结构,它改善了二叉树的查找效率,二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。与一般的二叉树的主要区别就是它对子节点的键值排序有一定要求。
二叉树(Binary Tree)
二叉树数据结构中一类重要的数据结构,也是树表家族最为基础的结构。二叉树每个节点最多具有两个子节点。本篇博客将简述二叉树原理和应用。
平衡二叉树(Balanced Binary Tree)
平衡二叉树(Balanced Binary Tree)是二叉树(Binary Tree)中最重要的一种树结构。由于它保证了一个良好的二叉树形结构,使得其查找、搜索和删除等操作的效率大大提高,是应用最广泛的二叉树。
普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
在统计学中,普通最小二乘法(OLS)是一种用于在线性回归模型中估计未知参数的线性最小二乘法。这篇博客将简要描述其参数的求解过程。
特征工程相关技术简介
机器学习的特征工程是将原始的输入数据转换成特征,以便于更好的表示潜在的问题,并有助于提高预测模型准确性的过程。找出合适的特征是很困难且耗时的工作,它需要专家知识,而应用机器学习基本也可以理解成特征工程。
集成学习(Ensemble Learning)简介及总结
集成学习(Ensemble Learning)是解决有监督机器学习的一类方法,它的思路是基于多个学习算法的集成来获取一个更好的预测结果。本文将介绍相关概念,并对一些注意事项进行总结。
大数据环境下的处理系统与数据分析
随着互联网的高速发展,人类进入了一个信息爆炸的时代,每个人的生活都充满了结构化和非结构化的数据。另外,随着以博客、社交网络、基于位置的服务LBS为代表的新型信息发布方式的不断涌现,以及云计算、物联网技术的兴起,数据正以前所未有的速度在不断地增长和积累,数据已经渗透到当今每一个行业和业务职能领域成为重要的产生因素,以数据为驱动的大数据时代已经不可避免地到来。本文主要围绕大数据特征、处理系统、以及大数据分析来阐述大数据环境下的数据分析在思想、流程、方法等方面的转变,以及围绕此主题而出现的相关关键技术与方法。
《Effective Java 第三版》笔记之七 消除过期的对象引用
本文是Effective Java第三版笔记的第七个之消除过期的对象引用,Item 7: Eliminate obsolete object references
Spark源码分析之RDD下的KMeans
这篇博客主要介绍Spark源码中的KMeans部分,说的是RDD下的KMeans源码
深度学习技巧之Early Stopping(早停法)
当我们训练深度学习神经网络的时候通常希望能获得最好的泛化性能(generalization performance,即可以很好地拟合数据)。但是所有的标准深度学习神经网络结构如全连接多层感知机都很容易过拟合:当网络在训练集上表现越来越好,错误率越来越低的时候,实际上在某一刻,它在测试集的表现已经开始变差。早停法就是一种防止深度学习网络模型过拟合的方法。