τ²-Bench - Telecom 大模型得分排行榜
数据来源:DataLearnerAI
τ²-Bench - Telecom详细排名数据表格
排名
模型
得分
发布时间
参数(亿)
为了解决大模型的Agent操作依赖交互和人工处理这个问题,普林斯顿大学与 Sierra Research 的研究团队在 2025 年 6 月提出了 τ²-Bench(Tau-Squared Benchmark),并发布了论文《τ²-Bench: Evaluating Conversational Agents in a Dual-Control Environment》。 它是对早期 τ-Bench 的扩展版本,旨在建立一种标准化方法,评估智能体在与用户共同作用于环境时的表现。
不同模式会显著影响成绩,请在对比榜单时留意标签提示。
提示:若某条记录未显示任何标签,即默认是 normal 常规模式。
常规推理:单步推理,不延长思考、也不调用额外工具。
Thinking 系列:常规延长思考时间,low/medium/high 代表不同耗时或深度,各厂商叫法不同。
Deeper thinking:在 Thinking 基础上进一步延长思考链条,通常意味着更多算力与时间。
允许调用检索、浏览器、代码解释器等外部能力。
并行思考:多线程/多代理协同探索再汇总,通常只在厂商内部实验环境中启用、尚未对外开放,因此被视为“作弊”模式。
数据来源:DataLearnerAI