仙宫云4090显卡租赁

大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~

Card image cap
检索增强生成(RAG)

大模型检索增强生成是一种结合了大规模语言模型的自动生成能力和针对特定数据的检索机制,以提供更准确、信息丰富的输出内容的技术。

查看RAG合集
Card image cap
Long Context

大模型对长上下文的处理能力在于它们能够理解和维持较长篇幅的文本连贯性,有助于提升质量,以及对复杂问题和讨论的理解和回应质量。

LongContext合集
Card image cap
AI Agent

大模型的AI Agent是一种高级智能系统,能够理解复杂的指令和查询,并以人类般的方式生成响应、执行任务或提供决策支持。

AI Agent合集
深度学习的标准符号表示

深度学习中的符号很多,但是大多数情况下,大家都使用同一套符号来表示。这篇博客主要以一个简单的神经网络为例,说明深度学习的标准符号以及相关的维度表示。主要来源是吴恩达的coursera课程。

2019/02/21 20:16:40
一张图总结大语言模型的技术分类、现状和开源情况

4月26日,亚马逊联合其它高校科研人员发表了一篇关于如何使用ChatGPT完成下游论文。里面使用了一个非常直观明了的大语言模型进化图总结了目前当前大语言模型的技术架构分类和开源现状,十分受欢迎。因此,4月30日,作者再次更新这幅图,增加了更多的大语言模型。

2023/06/13 09:41:41
origin绘图操作案例(1)

日常绘图时,会使用都origin,其是一款非常强大的制图工具

2017/11/17 10:47:56
CNN经典算法AlexNet介绍

2012年发表的AlexNet可以算是开启本轮深度学习浪潮的开山之作了。由于AlexNet在ImageNet LSVRC-2012(Large Scale Visual Recognition Competition)赢得第一名,并且错误率只有15.3%(第二名是26.2%),引起了巨大的反响。相比较之前的深度学习网络结构,AlexNet主要的变化在于激活函数采用了Relu、使用Dropout代替正则降低过拟合等。本篇博客将根据其论文,详细讲述AlexNet的网络结构及其特点。

2019/06/20 10:28:16
如何理解狄利克雷过程(Dirichlet Process)

狄利克雷过程是非参贝叶斯推断的基础模型。本博客将简要介绍狄利克雷过程模型

R语言如何根据抽样得到训练集与测试集

R语言如何根据抽样得到训练集与测试集

机器学习中MCMC方法介绍

有人把Metropolis算法当作是二十世纪最伟大的十大算法之一。这个算法是大规模抽样算法的一种,也叫做马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)。对于很多高维问题来说,比如计算一个凸体的体积,MCMC仿真是目前唯一可以在合理时间内解决这个问题的一般性方法。本文介绍了三种主流的MCMC算法,即MH算法、模拟退火算法和吉布斯抽样方法

深度学习之LSTM模型

在前面的博客中,我们已经介绍了基本的RNN模型和GRU深度学习网络,在这篇博客中,我们将介绍LSTM模型,LSTM全称是Long Short-Time Memory,也是RNN模型的一种。

2019/03/23 15:34:00
最强AI对话系统ChatGPT不完全使用指南——已发掘功能展览!

12月1日OpenAI官宣了其目前最强的AI对话系统之后,大家发现这个强大的系统能做的事情远超过大家的想象。我们也在第一时间发布了相关的博客:https://datalearner.com/blog/1051669904657253 。由于这个系统实在是太过强大,大家发现的能力越来越强。连Musk也在几个小时之前感叹这个系统是so much better at bullshit than they are!在这篇博客中,我们将收集关于这个系统目前的使用案例,给大家一个更加全面的展示结果。

2022/12/04 09:10:44
TensorFlow中常见的错误解释及解决方法

TensorFlow中常见的错误解释及解决方法

2019/11/01 11:21:15
人工神经网络(Artificial Neural Network)算法简介

人工神经网络,简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或者计算模型。其实是一种与贝叶斯网络很像的一种算法。之前看过一些内容始终云里雾里,这次决定写一篇博客。弄懂这个基本原理,毕竟现在深度学习太火了。

AdaBoost算法详解以及代码实现

AdaBoost,全称是“Adaptive Boosting”,由Freund和Schapire在1995年首次提出,并在1996发布了一篇新的论文证明其在实际数据集中的效果。这篇博客主要解释AdaBoost的算法详情以及实现。它可以理解为是首个“boosting”方式的集成算法。是一个关注二分类的集成算法。

2019/06/15 09:09:13