大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
Scikit-Learn有很优秀的机器学习处理思想,包括TensorFlow等新框架都借鉴了它的设计思想。最近的更新也让Scikit-Learn更加强大。在描述这个更新之前我们先简单看一下历史,然后让我们一起看看都有什么新内容吧。
监督学习中的分类问题和Logistic回归常常被用于推荐问题中关于BPR的研究,但是为什么一定要用Logistic函数来建模和优化呢?本篇博客将带你揭晓奥秘~
机器学习是实现人工智能最重要的方法之一,包括深度学习等都属于机器学习中的一种方法。因此,机器学习的应用被认为是实现人工智能应用的重要途径。人工智能的应用目标是使用计算机(机器)来代替或者辅助人工来完成某项任务。机器学习在解决业务问题的应用需要谨慎考虑。本文提供一些步骤可以参考。
在前面的博客中,我们已经对`Dask`做了一点简单的介绍了,在这篇博客中我们来对比一下`Dask`的`DataFrame`在不同条件下的运算性能,主要是连接操作的性能(merge)。
在编程的世界中,有不同层次的语言(language),这些语言有时候也称代码(code)。本文将简单介绍编程语言(Programming Language)、汇编语言(Assembly Language, ASM)、机器语言(Machine Language/Code)的区别。
在大语言模型的训练和应用中,计算精度是一个非常重要的概念,本文将详细解释关于大语言模型中FP32、FP16等精度概念,并说明为什么大语言模型的训练通常使用FP32精度。
Qwen系列是阿里巴巴开源的一系列大语言模型。在此前的开源中,阿里巴巴共开源了3个系列的大模型,分别是70亿参数规模和140亿参数规模的Qwen-7B和Qwen-14B,还有一个是多模态大模型Qwen-VL。而此次阿里巴巴开源了720亿参数规模的Qwen-72b,是目前国内最大参数规模的开源大语言模型,应该也是全球范围内首次有和Llama2-70b同等规模的大语言模型开源。
大模型虽然效果很好,但是对资源的消耗却非常高。更麻烦的其实不是训练过程慢,而是峰值内存(显存)的消耗直接决定了我们的硬件是否可以来针对大模型进行训练。最近LightningAI官方总结了使用Fabric降低大模型训练内存的方法。但是,它也适用于其它场景。因此,本文总结一下相关的方法。
最近几年,数据的重要性在各个领域都获得了巨大的重视。因此,数据管理相关的业务也成为各项基础设施中增长最快的业务,目前的市场规模约700亿美元,占所有企业的基础设施支持约1/5。仅在2021年,数据处理相关的公司获得了数百亿的风险投资。为此,Future总结了2022年全球最大的50家数据创业企业。这里我们列举其中的最大的10个进行介绍。
Vicuna是开源领域最强最著名的大语言模型,是UC伯克利大学的研究人员联合其它几家研究机构共同推出的一系列基于LLaMA微调的大语言模型。这个系列的模型因为极其良好的表现以及官方提供的匿名评测而广受欢迎。今天,LM-SYS发布Vicuna 1.5版本,包含4个模型,全部基于LLaMA2微调,最高支持16K上下文输入,最重要的是基于LLaMA2的可商用授权协议!免费商用授权!
目前开源领域已经有一些模型宣称支持了8K甚至是更长的上下文。那么这些模型在长上下文的支持上表现到底如何?最近LM-SYS发布了LongChat-7B和LangChat-13B模型,最高支持16K的上下文输入。为了评估这两个模型在长上下文的表现,他们对很多模型在长上下文的表现做了评测,让我们看看这些模型的表现到底怎么样。
昨天,吴恩达宣布与OpenAI联合推出了一个新的面向开发者的ChatGPT的Prompt课程。课程主要教授大家如何使用Prompt做ChatGPT的应用开发、使用ChatGPT的新方法、建立自己的个性化的Chatbot,以及最重要的,基于OpenAI的API来练习Prompt工程技巧!