大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
深度学习是目前最火的算法领域。他在诸多任务中取得的骄人成绩使得其进化越来越好。本文收集深度学习中的经典算法,以及相关的解释和代码实现。
序列数据是生活中很常见的一种数据,如一句话、一段时间某个广告位的流量、一连串运动视频的截图等。在这些数据中也有着很多数据挖掘的需求。RNN就是解决这类问题的一种深度学习方法。其全称是Recurrent Neural Networks,中文是递归神经网络。主要解决序列数据的数据挖掘问题。
1998年,LeCun提出了LeNet-5网络用来解决手写识别的问题。LeNet-5被誉为是卷积神经网络的“Hello Word”,足以见到这篇论文的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等。本篇博客将详解LeCun的这篇论文,并不是完全翻译,而是总结每一部分的精华内容。
本篇博客详细说明了概率矩阵分解(Probabilistic Matrix Factorization,PMF)的推导过程
随着深度学习的火热,对计算机算力的要求越来越高。从2012年AlexNet以来,人们越来越多开始使用GPU加速深度学习的计算。 然而,一些传统的机器学习方法对GPU的利用却很少,这浪费了很多的资源和探索的可能。在这里,我们介绍一个非常优秀的项目——RAPIDS,这是一个致力于将GPU加速带给传统算法的项目,并且提供了与Pandas和scikit-learn一致的用法和体验,非常值得大家尝试。
文本预处理是一件极其耗费时间的事情,不仅繁琐而且涉及的细节很多,处理不好对后面的事情的影响很大。本文将简要介绍文本预处理的一般步骤和方法。
multi-class classification problem和 multi-label classification problem在keras上的实现
在机器学习或者深度学习中,正则项是我们经常遇到的概念。它对提高模型的准确性和泛化能力非常重要。本文详细描述了正则项的来源以及与其他概念的相关关系。
最近几天AutoGPT十分火热,这是由开发者Significant Gravitas推出的项目。该项目可以根据你设置的目标,使用GPT-4自动帮你完成所有的任务。你只要提供OpenAI的API Key,保证里面有钱,那么它就可以根据你设定的目标,采用Google搜索、浏览网站、执行脚本等方式帮你完成目标。
科研成果发表速度对于国内的硕士生和博士生来说非常重要,它涉及了同学们的毕业、出国和奖学金等。很多童鞋在投稿之前都希望了解期刊的审稿周期。虽然大多数期刊没有规定明确的审稿时间,但是,随着大家对学术期刊投稿周期的关注,很多学术期刊也开始就自己的审稿速度开始有所要求,本文针对常见的期刊审稿周期提供一个普遍的分析方法。
Tensorflow中tf.data.Dataset是最常用的数据集类,我们也使用这个类做转换数据、迭代数据等操作。本篇博客将简要描述这个类的使用方法。
KKT条件(Karush–Kuhn–Tucker conditions)是求解带不等式约束的最优化问题中非常重要的一个概念和方法。这篇博客将解释相关概念和操作。
智谱AI发布第二代CodeGeeX编程大模型:CodeGeeX2-6B,最低6GB显存可运行,基于ChatGLM2-6B微调
OpenAI正式开放ChatGPT Team订阅计划,价格每个月贵25%,更多的GPT-4,附ChatGPT付费计划对比
在线广告的紧凑分配方案(Optimal Online Assignment with Forecasts)
Pika和HeyGen的开源替代品:上海人工智能实验室开源可以生成高质量最长61秒视频的LaVie文本生成视频大模型
DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~
OpenAI发布企业使用的ChatGPT:没有限制且更快的GPT-4、数据隔离、基于GPT-4的高级数据分析功能,但是暂不支持私有化部署
重回第一!OpenAI升级GPT-4-Turbo到2024-04-09版本(gpt-4-turbo-2024-04-09),GPT-4推理和数学能力大幅提高,基准测试最高有接近20%的提升!