DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
原创博客

原创AI技术博客

探索人工智能与大模型最新资讯与技术博客,涵盖机器学习、深度学习、自然语言处理等领域的原创技术文章与实践案例。

排序方式
按日期排序按浏览量排序
SCI、SCIE、SSCI和EI期刊的含义与区别

SCI、SCIE、SSCI和EI期刊的含义与区别

SCI期刊可能是国内科研活动中与期刊最相关的话题内容。类似的,包括SCIE、SSCI和EI期刊也是常见的话题。本文将对这几个名词进行解释,并着重说明SCIE是否属于SCI、以及SCI和EI、SSCI的区别。

2021/05/16 00:47:086,091
#SCI#期刊
学术工具

学术工具

为学术新人提供的学术工具列表

2021/04/29 10:19:042,487
#学术#论文检索
博客转移

博客转移

新浪博客转入

2021/03/08 12:05:542,249
#关注数据#学习数据
NumPy新版本发布了~~1.20.0横空出世

NumPy新版本发布了~~1.20.0横空出世

NumPy是Python中非常优秀的一个数据科学工具包,使用Python做数据分析的童鞋几乎是必备的工具。NumPy的提供了非常丰富的计算能力,但是底层是C语言实现的,因此既有Python语法的低门槛,速度上却依然非常好。NumPy本身也和Pandas、SciPy一起成为一种生态了。今天,NumPy发布了1.20.0最新版本,这个版本的改动很大。值得童鞋们关注~

2021/01/31 16:31:214,108
#numpy#python
123

123

123123

2020/08/03 10:34:513,756
#123
Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例

Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例

RNN的应用有很多,尤其是两个RNN组成的Seq2Seq结构,在时序预测、自然语言处理等方面有很大的用处,而每个RNN中一个节点是一个Cell,它是RNN中的基本结构。本文从如何使用RNN建模数据开始,重点解释RNN中Cell的结构,以及Keras中Cell相关的输入输出及其维度。我已经尽量解释了每个变量,但可能也有忽略,因此可能对RNN之前有一定了解的人会更友好,本文最主要的目的是描述Keras中RNNcell的参数以及输入输出的两个注意点。如有问题也欢迎指出,我会进行修改。

2020/07/12 21:25:134,012
#Keras#RNN
半导体市场概览

半导体市场概览

美国对华为的制裁让我们看到半导体领域核心技术国产化的重要性,尽管国内互联网发展迅速,也产生了阿里、腾讯、美团等巨头,但是底层的硬件技术依然依赖于西方国家。其实我个人觉得也不是我们多么希望自己自力更生,实在是被逼无奈,时不时断供一下,这谁能受得了。最近个人也在补充这些知识,把一些学习的这些东西记录下来,如有问题也希望大家指出。

2020/06/07 18:10:062,476
#半导体
Let's Encrypt的Certbot自动生成证书和自动更新证书

Let's Encrypt的Certbot自动生成证书和自动更新证书

网站启用HTTPS必须制作证书,而证书的制作需要定期更新。这里介绍了Certbot证书自动生成工具和自动更新的方法。并描述了Tomcat如何配置pem证书。

2020/06/06 21:34:414,270
#编程#网站
Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)

Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)

在使用Dask进行两个dataframe的concatenate操作的时候抛出ValueError,本文记录这个错误以及解决方案。

2020/05/31 17:42:243,244
#dask#dataframe
TEST

TEST

TEST

2020/05/31 14:21:112,589
#TEST
Dask调度器简介

Dask调度器简介

Dask支持多种调度器,从单线程、多线程、多进程到本地分布式和集群分布式,各种调度器在不同情况下有不同的作用,本文来源于Dask官方文档的翻译,主要向大家介绍这五种调度器的使用情景和方式。最后提供了如何在不同情境下设置Dask调度器的方法。

2020/05/24 18:34:066,887
#Dask#Python
Dask的Merge操作性能对比

Dask的Merge操作性能对比

在前面的博客中,我们已经对`Dask`做了一点简单的介绍了,在这篇博客中我们来对比一下`Dask`的`DataFrame`在不同条件下的运算性能,主要是连接操作的性能(merge)。

2020/05/24 18:32:523,731
#dask#python
Dask分布式任务中包含写文件的方法时候,程序挂起不结束的解决方案

Dask分布式任务中包含写文件的方法时候,程序挂起不结束的解决方案

使用Dask进行分布式处理的时候一个最常见的场景是有很多个文件,每个文件由一个进程处理。这种操作经常会遇到一个程序挂起的问题,使得程序永远运行,无法结束。本文描述如何解决。

2020/05/08 20:25:142,369
#dask#python
pandas.DataFrame.to_csv和dask.dataframe.to_csv在windows下保存csv文件出现多个换行结果

pandas.DataFrame.to_csv和dask.dataframe.to_csv在windows下保存csv文件出现多个换行结果

使用pandas的DataFrame和dask的DataFrame保存数据到csv文件时候会出现两个换行符的情况。本文描述如何解决。

2020/05/08 17:20:043,839
#dask#pandas
dask的dataframe的值变成1和foo的解决方法

dask的dataframe的值变成1和foo的解决方法

2020/05/08 14:30:532,913
#dask#python
通过命令行的方式建立Dask集群

通过命令行的方式建立Dask集群

Dask的集群启动创建也很简单,有好几种方式,最简单的是采用官方提供dask-scheduler和dask-worker命令行方式。本文描述如何使用命令行方法建立Dask集群。

2020/05/06 11:41:093,609
#dask#python
并行计算中如何提高处理效率——来自Dask的提示

并行计算中如何提高处理效率——来自Dask的提示

当数据量达到一定程度,单机的处理能力会无法达到性能的要求,采用并行计算,并利用多台服务器进行分布式处理可能会提升数据处理的速度,达到性能要求。然而如果使用不当,并行处理可能并不会提升处理的速度。这篇博客介绍了Dask中关于并行处理的一些效率方面的建议,尽管是针对Dask的说明,但对于所有的并行处理来说都是适用的。

2020/03/31 15:43:314,249
#Dask#Python
Dask的本地集群配置和编程

Dask的本地集群配置和编程

Dask提供了多种分布式调度器,当缺少多台服务器时候,也可以通过本地集群来实现单机分布式的计算。这篇博客主要就是介绍如何实现Dask的单机分布式调度器。第一小节是简介,第二节是单机调度器的简写版本,第三节是单机调度器的完整版本,第四节是使用的一些示例。

2020/03/31 14:25:105,286
#Dask#Python
122

122

221

2020/03/23 17:20:353,458
#122112
Pandas的DataFrame选择行或者列的注意事项

Pandas的DataFrame选择行或者列的注意事项

Pandas中的DataFrame选择某些行和某些列是有很多中操作和选择的,不太容易记,这里整理一下。

2020/03/23 11:48:148,164
#pandas#python
Git提交本地文件

Git提交本地文件

Git操作记录

2020/03/20 09:33:302,023
#git#svn
考虑价格和促销影响的销售预测算法实践

考虑价格和促销影响的销售预测算法实践

这是一篇来自Towards Data Science上面的一篇个人实践分享,主要是针对销量进行预测。一般来说,销量受到价格、季节等因素影响较大。这里就是考虑这些因素进行的一个实践。值得大家一试。这里我们翻译一下,并对其中的某些工作做一些简单的解释。

2020/02/15 18:16:565,053
#Prophet#python
Scikit-Learn最新更新简介

Scikit-Learn最新更新简介

Scikit-Learn有很优秀的机器学习处理思想,包括TensorFlow等新框架都借鉴了它的设计思想。最近的更新也让Scikit-Learn更加强大。在描述这个更新之前我们先简单看一下历史,然后让我们一起看看都有什么新内容吧。

2020/02/12 22:33:363,822
#sk-learn#人工智能
一个基于Python的机器学习项目——各种Kaggle比赛的解决方案

一个基于Python的机器学习项目——各种Kaggle比赛的解决方案

2019/11/03 12:02:162,973
#<span class='blog_tag'><a href='blog_list#tag
上一页
1...262728...39
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

今日推荐

  • margin
  • 平衡二叉树之红黑树(Red-Black Tree)简介及Java实现
  • 重磅!第二代ChatGLM发布!清华大学THUDM发布ChatGLM2-6B:更快更准,更低成本更长输入!
  • 深度学习9个小时内教会机器人拿起和剥开香蕉
  • 大模型如何使用长上下文信息?斯坦福大学最新论文证明,你需要将重要的信息放在输入的开始或者结尾处!
  • 关于机器学习理论和实践的信息图
  • Stable Diffusion2.1发布!
重磅!大规模预训练模型路线图