
《Effective Java 第三版》笔记之二 当构造参数很多的时候考虑使用builder
本文是Effective Java第三版笔记的第二个之当构造参数很多的时候考虑使用builder
加载中...
探索人工智能与大模型最新资讯与技术博客,涵盖机器学习、深度学习、自然语言处理等领域的原创技术文章与实践案例。

本笔记是来自Neural Networks and Deep Learning课程第二周作业

当我们训练深度学习神经网络的时候通常希望能获得最好的泛化性能(generalization performance,即可以很好地拟合数据)。但是所有的标准深度学习神经网络结构如全连接多层感知机都很容易过拟合:当网络在训练集上表现越来越好,错误率越来越低的时候,实际上在某一刻,它在测试集的表现已经开始变差。早停法就是一种防止深度学习网络模型过拟合的方法。