DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:Embedding
标签

「Embedding」相关文章

汇总「Embedding」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#Embedding
重磅!阿里开源2个多模态向量大模型和重排序大模型:Qwen3-VL-Embedding和Qwen3-VL-Reranker,图片和视频也可以用来做RAG了!

重磅!阿里开源2个多模态向量大模型和重排序大模型:Qwen3-VL-Embedding和Qwen3-VL-Reranker,图片和视频也可以用来做RAG了!

就在刚刚,阿里巴巴正式免费开源了两款全新的多模态模型——Qwen3-VL-Embedding(多模态向量模型)和 Qwen3-VL-Reranker(多模态重排序模型),首次在开源体系中系统性补齐了多模态 RAG 在“向量化检索 + 精排重排”两个关键环节上的能力空白。这两个模型是基于强大的Qwen3-VL基础模型构建的专用多模态向量与重排(Reranking)模型。

2026/01/08 23:07:09729
#Qwen3#Qwen3-VL-Embedding#Qwen3-VL-Reranker
Google DeepMind 发布 EmbeddingGemma:面向端侧的多语言开源向量模型(308M),小体量也能打

Google DeepMind 发布 EmbeddingGemma:面向端侧的多语言开源向量模型(308M),小体量也能打

EmbeddingGemma 是基于 Gemma 3 架构打造的全新开源多语言向量模型,专为移动端/本地离线应用而生。它以约 308M 参数的紧凑体量,在 RAG、语义搜索、分类、聚类等任务上提供高质量表征,同时将隐私与可用性拉满:无需联网即可在本地生成向量。

2025/09/06 05:02:35335
#EmbeddingGemma#Gemma#向量大模型
向量大模型新选择,阿里开源向量大模型Qwen-Embedding和重排序大模型Qwen-Reranker,开源向量检索能力第一名!完全免费开源。

向量大模型新选择,阿里开源向量大模型Qwen-Embedding和重排序大模型Qwen-Reranker,开源向量检索能力第一名!完全免费开源。

阿里巴巴Qwen团队发布了全新的Qwen3 Embedding系列模型,这是一套基于Qwen3基础模型构建的专用文本向量与重排(Reranking)模型。该系列模型凭借Qwen3强大的多语言理解能力,在多项文本向量与重排任务的Benchmark上达到了SOTA水平,其中8B尺寸的向量模型在MTEB多语言排行榜上排名第一。Qwen3 Reranker模型在多个评测基准上同样大幅超越了现有的主流开源竞品。

2025/06/08 22:01:38982
#Qwen#Qwen-Embedding#向量大模型
OpenAI发布新一代向量大模型,接口已经更新到text-embedding-3-large,embedding长度升级,价格最高下降5倍!

OpenAI发布新一代向量大模型,接口已经更新到text-embedding-3-large,embedding长度升级,价格最高下降5倍!

决定向量检索准确性的核心是向量大模型的能力,即文本转成embedding向量是否准确。今天,OpenAI宣布了他们第三代向量大模型text-embedding,模型能力增强的同时价格下降!

2024/01/26 14:40:342,316
#OpenAI#text-embedding-3#向量大模型
Embedding开源模型重磅玩家:北京智源人工智能研究院最新Embedding模型发布!登顶MTEB,免费商用授权!

Embedding开源模型重磅玩家:北京智源人工智能研究院最新Embedding模型发布!登顶MTEB,免费商用授权!

Embedding模型作为大语言模型(Large Language Model,LLM)的一个重要辅助,是很多LLM应用必不可少的部分。但是,现实中开源的Emebdding模型却很少。最近,北京智源人工智能研究院(BAAI)开源了BGE系列Embedding模型,不仅在MTEB排行榜中登顶冠军,还是免费商用授权的大模型,支持中文,应该可以满足相当多人的需要。

2023/08/08 20:26:463,773
#BGE#Embedding#Embedding大模型
GPT4All发布可以在CPU+Windows的消费级硬件上生成embeddings向量的模型:低成本、高质量、易上手的embedding生成新选择

GPT4All发布可以在CPU+Windows的消费级硬件上生成embeddings向量的模型:低成本、高质量、易上手的embedding生成新选择

文本embedding是当前大模型应用中一个十分重要的角色。在长上下文支持、私有数据问答等方面有非常重要的应用。但是相比较开源领域快速发布的大模型节奏,开源的embedding模型和数据却非常少。今天,GPT4All宣布在其软件中增加embedding的支持,这是一个完全免费且可商用的产品,最重要的是可以在我们本地用CPU来做推理。

2023/07/15 23:39:481,448
#embedding#GPT4All#本地运行
开源界最新力作!230万篇arXiv的论文标题和摘要的所有embeddings向量数据集免费开放!

开源界最新力作!230万篇arXiv的论文标题和摘要的所有embeddings向量数据集免费开放!

今天,一位年仅20岁的小哥willdepue 开源了230万arXiv论文的标题和摘要的embedding向量数据集,完全开源。该数据集包含截止2023年5月4日的所有arXiv上的论文标题和摘要的embedding结果,使用的是开源的Instructor XL抽取。未来将开放更多其它相关数据的embedding结果

2023/05/29 22:04:261,474
#embedding#开源#论文数据
AI大模型领域的热门技术——Embedding入门介绍以及为什么Embedding在大语言模型中很重要

AI大模型领域的热门技术——Embedding入门介绍以及为什么Embedding在大语言模型中很重要

今天,推特上一位科技博主SullyOmarr分享了一个关于embedding的内容十分火爆。主要介绍为什么embedding对于在目前的AI大模型中很重要。这是一个十分不错的关于embedding知识的介绍。本文将根据SullyOmarr的内容也对embedding做一个简单的介绍,并解释为什么它在大语言模型中十分重要。

2023/05/09 23:46:358,176
#Embedding#大语言模型#长输入
OpenAI发布最新Embedding模型——可惜又是一个收费API

OpenAI发布最新Embedding模型——可惜又是一个收费API

嵌入(Embedding)是深度学习方法处理自然语言文本最重要的方式之一。它将人类的自然语言和文本转换成一个浮点型的向量。向量之间的距离代表了它们的关系。今天,OpenAI宣布了他们的Embedding新模型——text-embedding-ada-002。官方宣称这是目前OpenAI最强的嵌入模型,可以将任意文本转换成一个向量,且效果好于目前所有OpenAI的模型。

2022/12/16 21:30:367,449
#Embedding#OpenAI#词嵌入

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

今日推荐

Meta上线了一个基于Emu文本生成图像大模型的图像生成系统Imagine:图像细节丰富、色彩鲜明、想象力很棒,而且免费使用!层次贝叶斯模型(一) 之 构建参数化的先验分布UWMadison前统计学教授详解大模型训练最重要的方法RLHF,RLHF原理、LLaMA2的RLHF详解以及RLHF替代方法高斯混合模型(GMM)GPT-5可能是什么样?网友总结了Sam在达沃斯论坛中的几场演讲,抽取了Sam演讲中包含的GPT-5相关的内容国产大模型进展神速!清华大学NLP小组发布顶尖多模态大模型:VisCPM,支持文本生成图片与多模态对话,图片理解能力优秀!微软开源最强38亿小规模参数大语言模型以及56亿参数规模全模态大模型,但是总体评测结果超过Qwen2.5-7B以及Llama3.1-8B等模型,接近GPT-4o mini。Java入门基础笔记-6绝对路径流浪地球2的数字生命计划可能快实现了!HeyGen即将发布下一代AI真人视频生成技术,效果逼真到无法几乎分辨!

最热博客

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介