DataLearner 标志DataLearnerAI
最新AI资讯
大模型评测
大模型列表
大模型对比
资源中心
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:大模型Agent能力评测
标签

「大模型Agent能力评测」相关文章

汇总「大模型Agent能力评测」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#大模型Agent能力评测
Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

本文介绍 Terminal-Bench 的设计理念,深入讲解 core、Terminal-Bench Hard 与最新 Terminal-Bench 2.0 的区别,帮助开发者选择合适的 AI 终端评测基准。

2025/11/24 14:11:54744
#大模型Agent能力评测#大模型评测
如何评估大模型的Agent能力?τ²-Bench:评估双控对话智能体的新标准

如何评估大模型的Agent能力?τ²-Bench:评估双控对话智能体的新标准

为了解决大模型的Agent操作依赖交互和人工处理这个问题,普林斯顿大学与 Sierra Research 的研究团队在 2025 年 6 月提出了 τ²-Bench(Tau-Squared Benchmark),并发布了论文《τ²-Bench: Evaluating Conversational Agents in a Dual-Control Environment》。 它是对早期 τ-Bench 的扩展版本,旨在建立一种标准化方法,评估智能体在与用户共同作用于环境时的表现。

2025/10/12 10:03:58490
#大模型Agent能力评测#大模型评测

专题合集

RAG(检索增强生成)
Long Context 长上下文
AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 神器!AI硬件基准测试库发布
  • 新模型发布:Gemma 3 270M,为特定任务打造的高效工具
  • 对比关系生成模型(Comparative Relation Generative Model)
  • 重磅!马斯克宣布本周开源xAI开发的大语言模型Grok!
  • Google发布全新Gemini 2.5 Flash Lite:极致速度与性价比的轻量级新选择,实测生成速度最高可超过400 tokens/每秒,能力喜人!堪称甜品级大模型!
  • 比OpenAI原始的Whisper快70倍的开源语音识别模型Whisper JAX发布!
  • 向量大模型新选择,阿里开源向量大模型Qwen-Embedding和重排序大模型Qwen-Reranker,开源向量检索能力第一名!完全免费开源。
  • 大型语言模型的新扩展规律(DeepMind新论文)——Training Compute-Optimal Large Language Models