DataLearner 标志DataLearnerAI
最新AI资讯
大模型评测
大模型列表
大模型对比
资源中心
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:大模型评测
标签

「大模型评测」相关文章

汇总「大模型评测」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#大模型评测
探索 OSWorld Verified:大模型AI Agent在真实计算机任务中的评估框架

探索 OSWorld Verified:大模型AI Agent在真实计算机任务中的评估框架

OSWorld 是一个用于测试 AI 代理在真实计算机环境中的基准。这些代理是能处理文字、图片等信息的 AI 系统。基准包括开放式任务,比如操作文件或使用软件。OSWorld Verified 是它的改进版,通过修复问题和提升运行方式,提供更准确的测试结果。它支持不同操作系统,如 Ubuntu、Windows 和 macOS,并允许 AI 通过互动学习来完成任务。

2026/02/18 16:21:5932
#OSWorld#OSWorld-Verified
AIME 2026:基于2026年美国数学邀请赛的大模型数学能力评估基准

AIME 2026:基于2026年美国数学邀请赛的大模型数学能力评估基准

AIME 2026 是基于美国数学邀请赛(American Invitational Mathematics Examination)2026 年问题的评测基准,用于评估大语言模型在高中水平数学推理方面的表现。该基准包含 15 个问题,覆盖代数、几何、数论和组合数学等领域。模型通过生成答案并与标准答案比较来计算准确率。

2026/02/13 15:05:25111
#AIME#AIME2026
AA-LCR:大模型长上下文推理能力的权威评测基准(Artificial Analysis Long Context Reasoning)是什么?包含哪些任务?如何测试大模型超长上下文能力?

AA-LCR:大模型长上下文推理能力的权威评测基准(Artificial Analysis Long Context Reasoning)是什么?包含哪些任务?如何测试大模型超长上下文能力?

AA-LCR 是由独立 AI 评测机构 Artificial Analysis 开发的基准测试集,旨在真实模拟知识工作者(如分析师、研究员、律师)处理海量文档的场景。

2026/02/07 09:24:21150
#大模型评测#大模型评测基准
OSWorld-Verified:大模型“用电脑”能力的权威评测基准

OSWorld-Verified:大模型“用电脑”能力的权威评测基准

OSWorld(Open Source World)是首个真正基于真实操作系统环境的多模态Agent评测平台。它不同于传统的模拟环境(如MiniWoB或WebArena),而是直接在完整的Ubuntu、Windows和macOS系统中运行,让AI代理通过截图观察、鼠标键盘操作来完成任务。

2026/02/06 08:38:21167
#OSWorld-Verified#大模型评测基准
GDPval-AA:大模型在真实世界任务中的“经济价值”评测基准

GDPval-AA:大模型在真实世界任务中的“经济价值”评测基准

OpenAI在2025年9月推出的GDPval基准,将焦点转向“具有经济价值的真实任务”,而第三方独立机构Artificial Analysis在此基础上开发的GDPval-AA,进一步引入了agentic(代理)能力评估和ELO排行榜,成为当前最受关注的“实用性”评测基准之一。

2026/02/06 08:34:58178
#GDPval-AA#大模型评测基准
MMEB:多模态嵌入基准评测,用于测试多模态向量检索和排序准确性的基准

MMEB:多模态嵌入基准评测,用于测试多模态向量检索和排序准确性的基准

MMEB(Massive Multimodal Embedding Benchmark)是一个用于评估多模态嵌入模型的基准测试框架。该基准最初聚焦于图像-文本嵌入,并在后续版本中扩展到文本、图像、视频和视觉文档输入。MMEB通过收集多样化数据集,提供一个统一的评估平台,用于测试模型在分类、检索和其他任务上的性能。

2026/01/09 09:43:40402
#多模态嵌入评测#大模型评测
Context Arena:长上下文大模型评测基准介绍

Context Arena:长上下文大模型评测基准介绍

Context Arena 是一个专注于评估大语言模型长上下文处理能力的基准平台。它基于 OpenAI 发布的 Multi-Round Coreference Resolution (MRCR) 数据集,提供交互式排行榜,用于比较不同模型在复杂长对话中的信息检索和理解性能。该基准强调模型在长上下文下的实际表现,避免单纯依赖训练数据记忆。

2025/12/27 10:42:00531
#ContextArena#大模型评测
Tool Decathlon:大模型工具使用能力基准测试

Tool Decathlon:大模型工具使用能力基准测试

Tool Decathlon(简称 Toolathlon)是一个针对语言代理的基准测试框架,用于评估大模型在真实环境中使用工具执行复杂任务的能力。该基准涵盖32个软件应用和604个工具,包括日常工具如 Google Calendar 和 Notion,以及专业工具如 WooCommerce、Kubernetes 和 BigQuery。它包含108个任务,每个任务平均需要约20次工具交互。该框架于2025年10月发布,旨在填补现有评测在工具多样性和长序列执行方面的空白。通过执行式评估,该基准提供可靠的性能指

2025/12/02 14:40:28327
#大模型工具使用#大模型评测
Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

本文介绍 Terminal-Bench 的设计理念,深入讲解 core、Terminal-Bench Hard 与最新 Terminal-Bench 2.0 的区别,帮助开发者选择合适的 AI 终端评测基准。

2025/11/24 14:11:54733
#大模型Agent能力评测#大模型评测
IMO-Bench:谷歌发布的用于大模型数学推理的鲁棒评估基准

IMO-Bench:谷歌发布的用于大模型数学推理的鲁棒评估基准

IMO-Bench 是 Google DeepMind 开发的一套基准测试套件,针对国际数学奥林匹克(IMO)水平的数学问题设计,用于评估大型语言模型在数学推理方面的能力。该基准包括三个子基准:AnswerBench、ProofBench 和 GradingBench,涵盖从短答案验证到完整证明生成和评分的全过程。发布于 2025 年 11 月,该基准通过专家审核的问题集,帮助模型实现 IMO 金牌级别的性能,并提供自动评分机制以支持大规模评估。

2025/11/10 17:22:45293
#大模型数学推理评测#大模型评测
LiveBench:一种抗污染的大型语言模型基准测试

LiveBench:一种抗污染的大型语言模型基准测试

LiveBench是一个针对大型语言模型(LLM)的基准测试框架。该框架通过每月更新基于近期来源的问题集来评估模型性能。问题集涵盖数学、编码、推理、语言理解、指令遵循和数据分析等类别。LiveBench采用自动评分机制,确保评估基于客观事实而非主观判断。基准测试的总问题数量约为1000个,每月替换约1/6的问题,以维持测试的有效性。

2025/11/09 22:06:40239
#大模型综合能力测试#大模型评测
BrowseComp:OpenAI发布的AI Agent网页浏览能力评估基准

BrowseComp:OpenAI发布的AI Agent网页浏览能力评估基准

BrowseComp是一个用于评估AI代理网页浏览能力的基准测试。它包含1266个问题,这些问题要求代理在互联网上导航以查找难以发现的信息。该基准关注代理在处理多跳事实和纠缠信息时的持久性和创造性。OpenAI于2025年4月10日发布此基准,并将其开源在GitHub仓库中。

2025/11/07 10:52:40241
#AIAgent评测#大模型评测
IFBench:大模型指令跟随能力评测基准详解

IFBench:大模型指令跟随能力评测基准详解

IFBench 是一个针对大语言模型(LLM)指令跟随能力的评测基准。该基准聚焦于模型对新颖、复杂约束的泛化表现,通过 58 个可验证的单轮任务进行评估。发布于 2025 年 7 月,该基准旨在揭示模型在未见指令下的精确执行水平。目前,主流模型在该基准上的得分普遍低于 50%,显示出指令跟随的潜在局限。

2025/11/03 10:04:32331
#大模型评测#大模型评测基准
Scale AI 发布 SWE-Bench Pro 评测:AI 软件工程代理的新基准

Scale AI 发布 SWE-Bench Pro 评测:AI 软件工程代理的新基准

Scale AI 于 2025 年 9 月 21 日发布了 SWE-Bench Pro,这是一个针对 AI 代理在软件工程任务上的评估基准。该基准包含 1,865 个问题,来源于 41 个活跃维护的代码仓库,聚焦企业级复杂任务。现有模型在该基准上的表现显示出显著差距,顶级模型的通过率低于 25%,而最近的榜单更新显示部分模型已超过 40%。这一发布旨在推动 AI 在长时程软件开发中的应用研究。

2025/10/22 20:34:35327
#SWE-BenchPro#大模型编程能力
FrontierMath:AI大模型高级数学推理评测的新基准

FrontierMath:AI大模型高级数学推理评测的新基准

FrontierMath是一个由Epoch AI开发的基准测试套件,包含数百个原创的数学问题。这些问题由专家数学家设计和审核,覆盖现代数学的主要分支,如数论、实分析、代数几何和范畴论。每个问题通常需要相关领域研究人员投入数小时至数天的努力来解决。基准采用未发表的问题和自动化验证机制,以减少数据污染风险并确保评估可靠性。当前最先进的AI模型在该基准上的解决率低于2%,这反映出AI在处理专家级数学推理时的局限性。该基准旨在为AI系统向研究级数学能力进步提供量化指标。

2025/10/19 17:45:17284
#FrontierMath#大模型数学能力
如何评估大模型的Agent能力?τ²-Bench:评估双控对话智能体的新标准

如何评估大模型的Agent能力?τ²-Bench:评估双控对话智能体的新标准

为了解决大模型的Agent操作依赖交互和人工处理这个问题,普林斯顿大学与 Sierra Research 的研究团队在 2025 年 6 月提出了 τ²-Bench(Tau-Squared Benchmark),并发布了论文《τ²-Bench: Evaluating Conversational Agents in a Dual-Control Environment》。 它是对早期 τ-Bench 的扩展版本,旨在建立一种标准化方法,评估智能体在与用户共同作用于环境时的表现。

2025/10/12 10:03:58486
#大模型Agent能力评测#大模型评测
Aider Benchmark:面向代码编辑的大模型评测基准全解析

Aider Benchmark:面向代码编辑的大模型评测基准全解析

Aider 是一个在终端里进行结对编程的开源工具。为评估不同大模型在“按照指令对代码进行实际可落地的编辑”上的能力,Aider 提出并维护了公开基准与排行榜,用于比较模型在无人工干预下完成代码修改任务的可靠性与成功率。该评测已被多家模型提供方在技术说明中引用,用作代码编辑与指令遵循能力的对照指标。

2025/08/20 03:50:12452
#命令行助手#大模型编程能力
IOI(International Olympiad in Informatics):从世界顶级算法竞赛到大语言模型的新基准

IOI(International Olympiad in Informatics):从世界顶级算法竞赛到大语言模型的新基准

在衡量大语言模型(LLM)智能水平的众多方法中,除了常见的常识推理、专业领域测评外,还有一个正在兴起且极具挑战性的方向——算法问题求解。在这一领域,几乎没有哪项比赛能比 国际信息学奥林匹克(International Olympiad in Informatics,简称 IOI) 更具权威性与含金量。

2025/08/12 14:48:26259
#大模型数学能力评测#大模型评测
大模型评测基准AIME 2024介绍

大模型评测基准AIME 2024介绍

2024年,美国数学邀请赛(AIME)成为评估大型语言模型(LLM)数学推理能力的重要基准。AIME是一项备受尊崇的考试,包含15道题,考试时间为3小时,旨在考察美国顶尖高中生在各类数学领域的复杂问题解决能力。

2025/08/11 16:56:234,837
#SWE-Bench#大模型编程能力
SWE-bench Verified:提升 AI 模型在软件工程任务评估中的可靠性

SWE-bench Verified:提升 AI 模型在软件工程任务评估中的可靠性

在人工智能领域,随着大型语言模型(LLMs)在各类任务中的表现不断提升,评估这些模型的实际能力变得尤为重要。尤其是在软件工程领域,AI 模型是否能够准确地解决真实的编程问题,是衡量其真正应用潜力的关键。而在这方面,OpenAI 推出的 *SWE-bench Verified* 基准测试,旨在提供一个更加可靠和精确的评估工具,帮助开发者和研究者全面了解 AI 模型在处理软件工程任务时的能力。

2025/08/11 16:54:151,343
#SWE-Bench#大模型编程能力
SWE-bench大模型评测基准介绍:测试大模型在真实软件工程任务中的能力

SWE-bench大模型评测基准介绍:测试大模型在真实软件工程任务中的能力

随着大语言模型(LLM)的快速发展,它们在自然语言处理(NLP)、代码生成等领域的表现已达到前所未有的高度。然而,现有的代码评测基准(如 HumanEval)通常侧重于**自包含的、较短的代码生成任务**,而未能充分模拟真实世界的软件开发环境。为弥补这一空白,研究者提出了一种全新的评测基准——**SWE-Bench**,旨在测试 LLM 在**真实软件工程问题**中的能力。

2025/08/11 16:51:522,323
#大模型编程能力#大模型评测
Simple Bench:一个专为“常识”而生的大模型评测基准

Simple Bench:一个专为“常识”而生的大模型评测基准

随着大型语言模型(LLM)的飞速发展,如何准确、全面地评估它们的能力成为了一个日益重要的课题。在众多评测基准中,Simple Bench 以其独特的定位脱颖而出,它专注于检验模型在日常人类推理方面的能力,而在这些方面,当前最先进的模型往往还不如普通人。本文将详细介绍 Simple Bench 评测基准,探讨其出现的背景、设计理念、评测流程以及当前主流模型的表现。

2025/08/07 09:34:05487
#SimpleBench#大模型评测
大模型评测基准Codeforces:代码生成能力的终极试金石

大模型评测基准Codeforces:代码生成能力的终极试金石

随着大型语言模型(LLM)能力的飞速发展,如何科学、准确地评估其性能,特别是深度的逻辑推理和代码生成能力,已成为人工智能领域的一大挑战。传统的评测基准在面对日益强大的模型时,逐渐暴露出数据污染、难度不足、无法有效评估真实推理能力等问题。在这一背景下,一个旨在检验模型竞赛级编程水平的评测基准——Codeforces应运而生,为我们提供了一个更严苛、更接近人类程序员真实水平的竞技场。

2025/08/06 09:10:31439
#代码生成评测#大模型评测
大模型评测SimpleVQA全方位深度解析,直击多模态模型“事实幻觉”

大模型评测SimpleVQA全方位深度解析,直击多模态模型“事实幻觉”

随着多模态大语言模型(MLLM)在各个领域的应用日益广泛,一个核心问题浮出水面:我们如何信赖它们生成内容的准确性?当模型需要结合图像和文本进行问答时,其回答是否基于事实,还是仅仅是“看似合理”的幻觉?为了应对这一挑战,一个名为SimpleVQA的新型评测基准应运而生,旨在为多模态模型的事实性能力提供一个清晰、可量化的度量衡。

2025/08/01 15:49:57278
#多模态评测#大模型评测
上一页
123
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • OpenAI发布GPT-5.1:围绕“对话体验、一致性、任务适配性”进行的系统化优化的实质性升级!重回写作排名第一!
  • Hugging Face发布最新的深度学习模型评估库Evaluate!
  • 2022年程序员必备的网站收藏
  • Google发布Gemini 2.0 Pro:MMLU Pro评测超过DeepSeek V3略低于DeepSeek R1,最高上下文长度支持200万tokens!开发者每天免费50次请求!
  • 苹果最新的M3系列芯片对于大模型的使用来说未来价值如何?结果可能不太好!M3芯片与A100算力对比!
  • LFDMM源码剖析(融入词向量的概率图模型)
  • Dask的本地集群配置和编程
大模型的多语言能力来自哪里?大模型是否有自己的内部语言?在英文数据集上学习到的知识可以用中文表达出来吗?