DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:大模型评测/
  4. 第2页
标签

「大模型评测」相关文章(第2页)

汇总「大模型评测」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#大模型评测
Ai2发布全新评测基准SciArena:为科学文献任务而生的大模型评测新基准,o3大幅领先所有大模型

Ai2发布全新评测基准SciArena:为科学文献任务而生的大模型评测新基准,o3大幅领先所有大模型

Ai2近日发布的全新评测平台——SciArena,为这一痛点带来了创新解法。此次产品不仅继承了“人类众包对比评测”的理念,更结合科学问题的独特复杂性,构建了开放、透明且可迭代的模型评测生态。

2025/07/02 21:06:29272
#SciArena#大模型科研评测#大模型评测
介绍 AIME 2025:评估大型语言模型高级数学推理能力的基准

介绍 AIME 2025:评估大型语言模型高级数学推理能力的基准

随着大语言模型(LLM)的发展越来越快,我们需要更好的方法来评估它们到底有多“聪明”,特别是在处理复杂数学问题的时候。AIME 2025 就是这样一个工具,它专门用来测试当前 AI 在高等数学推理方面的真实水平。

2025/06/08 21:00:561,710
#AIME#AIME2025#大模型评测
MMMU基准:多模态多学科复杂推理能力的权威评估体系

MMMU基准:多模态多学科复杂推理能力的权威评估体系

大规模多学科多模态理解与推理基准(MMMU)于2023年11月推出,是一种用于评估多模态模型的复杂工具。该基准测试人工智能系统在需要大学水平学科知识和深思熟虑推理的任务上的能力。与之前的基准不同,MMMU强调跨多个领域的先进感知和推理,旨在衡量朝专家级人工智能通用智能(AGI)的进展。

2025/05/05 21:48:00673
#MMMU#多模态评测#大模型多模态能力
GPQA Diamond:评估专家级推理能力的问答基准

GPQA Diamond:评估专家级推理能力的问答基准

通用人工智能(AGI)的进步需要可靠的评估基准。GPQA (Grade-Level Problems in Question Answering) Diamond 基准旨在衡量模型在需要深度推理和领域专业知识问题上的能力。该基准由纽约大学、CohereAI 及 Anthropic 的研究人员联合发布,其相关论文可在 arXiv 上查阅 (https://arxiv.org/pdf/2311.12022 )。GPQA Diamond是GPQA系列中最高质量的评测数据,包含198条结果。

2025/03/20 17:34:133,094
#GPQA#GPQADiamond#大模型评测
GPQA: 可以防止使用谷歌作弊的研究生级别难度的大模型专业能力评测基准(A Graduate-Level Google-Proof Q&A Benchmark)

GPQA: 可以防止使用谷歌作弊的研究生级别难度的大模型专业能力评测基准(A Graduate-Level Google-Proof Q&A Benchmark)

研究生级别的 **Google 防查找问答基准测试**(即Graduate-Level Google-Proof Q&A Benchmark,简称 GPQA)是大型语言模型(LLM)面临的最具挑战性的评估之一。GPQA 旨在推动人工智能能力的极限,提供一个严格的测试平台,不仅评估模型的事实记忆能力,还考察其在专业科学领域的深度推理和理解能力。本篇博文将客观介绍 GPQA,涵盖它的起源、目的、组成部分,以及领先的大型语言模型在这个高要求基准测试中的表现。

2025/03/18 15:05:241,657
#GPQA#GPQADiamond#大模型评测
LiveCodeBench:全面的 LLM 代码评测基准基准

LiveCodeBench:全面的 LLM 代码评测基准基准

LiveCodeBench 由加州大学伯克利分校、麻省理工学院和康奈尔大学的研究人员开发,是一个先进的评测基准套件,专门用于严格评估大语言模型 (LLMs) 在代码处理方面的能力,并解决现有基准测试的局限性。通过引入实时更新的问题集和多维度评估方法,LiveCodeBench 确保对 LLM 进行公平、全面和稳健的评估。

2025/03/09 19:55:143,495
#LiveCodeBench#大模型编程评测#大模型评测
大模型多模态评测基准MMMU介绍

大模型多模态评测基准MMMU介绍

大模型多模态评测基准MMMU(大规模多学科多模态理解和推理基准)是一项旨在评估多模态人工智能模型在复杂跨学科任务中综合能力的测试工具。

2025/02/21 20:51:01827
#MMMU#大模型多模态评测#大模型评测
SWE-Lancer:OpenAI发布的一个全新大模型评测基准,用来测试大模型解决真实世界软件工程的能力

SWE-Lancer:OpenAI发布的一个全新大模型评测基准,用来测试大模型解决真实世界软件工程的能力

短短两年间,AI技术的进步为软件工程带来了新的可能性。然而,这些模型在真实世界的软件工程任务中究竟能发挥多大的作用?它们能否通过完成实际的软件工程任务来赚取可观的收入?为了验证大模型解决真实任务的能力和水平,OpenAI发布了一个全新的大模型评测基准SWE-Lancer来评测大模型这方面的能力。

2025/02/19 21:40:31429
#SWE-Lancer#大模型评测#大模型评测基准
MATH vs. MATH-500:数学推理评测基准的对比与解析

MATH vs. MATH-500:数学推理评测基准的对比与解析

在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。

2025/02/15 11:36:411,975
#MATH#MATH-500#大模型数学评测能力
MMLU Pro大模型评测基准介绍:MMLU的进化版本,可以更好区分大模型普遍知识和推理能力的通用评测标准

MMLU Pro大模型评测基准介绍:MMLU的进化版本,可以更好区分大模型普遍知识和推理能力的通用评测标准

大模型已经对很多行业产生了巨大的影响,如何准确评测大模型的能力和效果,已经成为业界亟待解决的关键问题。生成式AI模型,如大型语言模型(LLMs),能够生成高质量的文本、代码、图像等内容,但其评测却相对很困难。而此前很多较早的评测也很难区分当前最优模型的能力。 以MMLU评测为例,2023年3月份,GPT-4在MMLU获得了86.4分之后,将近2年后的2024年年底,业界最好的大模型在MMLU上得分也就90.5,提升十分有限。 为此,滑铁卢大学、多伦多大学和卡耐基梅隆大学的研究人员一起提出了MMLU P

2025/02/06 08:13:312,531
#MMLU#MMLUPro#大模型评测
大模型评测的新标杆:超高难度的“Humanity’s Last Exam”(HLE)介绍

大模型评测的新标杆:超高难度的“Humanity’s Last Exam”(HLE)介绍

近年来,大语言模型(LLM)的能力飞速提升,但评测基准的发展却显得滞后。以广泛使用的MMLU(大规模多任务语言理解)为例,GPT-4、Claude等前沿模型已能在其90%以上的问题上取得高分。这种“评测饱和”现象导致研究者难以精准衡量模型在尖端知识领域的真实能力。为此,Safety for AI和Scale AI的研究人员推出了Humanity’s Last Exam大模型评测基准。这是一个全新的评测基准,旨在成为大模型“闭卷学术评测的终极考验”。

2025/02/03 19:12:292,593
#HLE#大模型评测#大模型评测基准
Arena Hard:LM-SYS推出的更难更有区分度的大模型评测基准

Arena Hard:LM-SYS推出的更难更有区分度的大模型评测基准

评估日益发展的大型语言模型(LLM)是一个复杂的任务。传统的基准测试往往难以跟上技术的快速进步,容易过时且无法捕捉到现实应用中的细微差异。为此,LM-SYS研究人员提出了一个全新的大模型评测基准——Arena Hard。这个平常基准是基于Chatbot Arena发展而来,相比较常规的评测基准,它更难也更全面。

2025/01/30 20:38:31949
#ArenaHard#ChatbotArena#大模型评测
DataLearnerAI-GPT:可以回答关于大模型评测结果的GPT

DataLearnerAI-GPT:可以回答关于大模型评测结果的GPT

最近自定义GPTs非常火热,出现了大量的自定义GPT,可以完成各种各样的有趣的任务。DataLearnerAI目前也创建了一个DataLearnerAI-GPT,目前可以回答大模型在不同评测任务上的得分结果。这些回答是基于OpenLLMLeaderboard数据回答的。未来会考虑增加更多信息,包括DataLearner网站上所有的大模型博客和技术介绍。

2023/11/12 11:25:501,304
#DataLearnerAI-GPT#OpenLLMLeaderboard#大模型评测
DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。

2023/09/22 11:52:3812,665
#C-Eval#GSM8K#MMLU
上一页
123
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

今日推荐

Qwen1.5系列再次更新:阿里巴巴开源320亿参数Qwen1.5-32B模型,评测结果超过Mixtral 8×7B MoE,性价比更高!Dask concat throws ValueError: Shape of passed values is (xxx, xxx), indices imply (xxx, xxx)考虑价格和促销影响的销售预测算法实践Meta即将推出开源的CodeLLaMA:一种新的编程AI模型OpenAI发布的GPT-4o能力总结,数学推理能力超过所有模型,价格下降一半!智谱AI与清华大学联合发布第三代基座大语言模型ChatGLM3:6B版本的ChatGLM3能力大幅增强,依然免费商用授权!重磅!大规模预训练模型路线图OpenAI官方教程:如何使用基于embeddings检索来解决GPT无法处理长文本和最新数据的问题0基础基于Node.js创建第一个Vue的web项目Java入门基础笔记-4

最热博客

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介