DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
Original Blog

Original AI Tech Blogs

Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

Sort by
苹果最新的M3系列芯片对于大模型的使用来说未来价值如何?结果可能不太好!M3芯片与A100算力对比!

苹果最新的M3系列芯片对于大模型的使用来说未来价值如何?结果可能不太好!M3芯片与A100算力对比!

M3系列芯片是苹果最新发布的芯片。也是当前苹果性能最好的芯片。由于苹果的统一内存架构以及它的超大内存,此前很多人发现可以使用苹果的电脑来运行大语言模型。尽管它的运行速度不如英伟达最先进的显卡,但是由于超大的内存(显存),它可以载入非常大规模的模型。而此次的M3芯片效果如何,本文做一个简单的分析。

2023/10/31 16:52:174,653
#M3芯片#M系列芯片#大模型硬件
ChatGPT 3.5只有200亿规模的参数?最新微软的论文暴漏OpenAI的ChatGPT的参数规模远低于1750亿!

ChatGPT 3.5只有200亿规模的参数?最新微软的论文暴漏OpenAI的ChatGPT的参数规模远低于1750亿!

2022年11月底发布的ChatGPT是基于OpenAI的GPT-3优化得到的可以进行对话的一个产品。直到今年更新到3.5和4之后,官方分为两个产品服务,其中ChatGPT 3.5是基于gpt-3.5-turbo打造,免费试用。因此,几乎所有人都自然认为这是一个与GPT-3具有同等规模参数的大模型,也就是说有1750亿参数规模。但是,在10月26日微软公布的CodeFusion论文的对比中,大家发现,微软的表格里面写的ChatGPT 3.5只有200亿参数规模。

2023/10/30 21:29:54842
#ChatGPT#GPT-3#GPT-3.5
为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解

为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解

在大语言模型的训练和应用中,计算精度是一个非常重要的概念,本文将详细解释关于大语言模型中FP32、FP16等精度概念,并说明为什么大语言模型的训练通常使用FP32精度。

2023/10/30 20:48:014,218
#FP16#FP32#大模型训练
可能是史上最强大的AI Agent!OpenAI重磅更新:整合了多模态、外部访问、数据分析后的GPT-4更像是AI Agent了!

可能是史上最强大的AI Agent!OpenAI重磅更新:整合了多模态、外部访问、数据分析后的GPT-4更像是AI Agent了!

此前OpenAI的ChatGPT Plus版本为GPT-4模型提供了多个强大的插件供大家使用,包括基于Bing的带网络浏览的Browse、文本生成图片的DALL·E3、高级数据分析功能等。就在几个小时前,OpenAI的部分用户收到了官方的一个非常重磅的更新,即上传任意文档的分析以及整合了所有工具后的GPT-4!这个功能被称为GPT-4(All Tools)!这个工具可以在一次对话中自主选择调用多个不同工具完成用户的输入指令,非常接近AI Agent形态!

2023/10/29 14:56:412,229
#AIAgent#AllTools#GPT-4
智谱AI与清华大学联合发布第三代基座大语言模型ChatGLM3:6B版本的ChatGLM3能力大幅增强,依然免费商用授权!

智谱AI与清华大学联合发布第三代基座大语言模型ChatGLM3:6B版本的ChatGLM3能力大幅增强,依然免费商用授权!

ChatGLM系列是智谱AI发布的一系列大语言模型,因为其优秀的性能和良好的开源协议,在国产大模型和全球大模型领域都有很高的知名度。今天,智谱AI开源其第三代基座大语言模型ChatGLM3-6B,官方说明该模型的性能较前一代大幅提升,是10B以下最强基础大模型!

2023/10/27 17:13:142,799
#ChatGLM#ChatGLM3
检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?

检索增强生成中的挑战详解:哪些因素影响了检索增强生成的质量?需要如何应对?

检索增强生成(Retrieval-augmented Generation,RAG)是一种结合了检索和大模型生成的方法。它从一个大型知识库中检索与输入相关的信息,然后利用这些信息作为上下文和问题一起输入给大语言模型,并让大语言模型基于这些信息生成答案的方式。检索增强生成可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,但是,如果文档切分有问题、检索不准确,结果也是不好的。

2023/10/27 11:46:081,419
#RAG#向量检索增强生成#检索增强生成
检索增强生成(RAG)方法有哪些提升效果的手段:LangChain在RAG功能上的一些高级能力总结

检索增强生成(RAG)方法有哪些提升效果的手段:LangChain在RAG功能上的一些高级能力总结

检索增强生成(Retrieval-augmented Generation,RAG)可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,如果文档切分有问题、检索不准确,结果也是不好的。而检索增强生成也有一些提升方法,本文基于LangChain提供的一些方法给大家总结一下。

2023/10/27 11:45:434,224
#RAG#查询重写#检索增强生成
2023年AI与开源进展总结:来自LightningAI首席AI科学家Sebastian Raschka的2023年年度AI发展总结

2023年AI与开源进展总结:来自LightningAI首席AI科学家Sebastian Raschka的2023年年度AI发展总结

Sebastian Raschka博士是一位深度学习和人工智能研究员、程序员、作者和教育者。他曾是威斯康星大学麦迪逊分校的统计学助理教授,专注于机器学习和深度学习研究。然而,他在2023年辞职,全职投入到他在2022年加入的Lightning AI创业公司,担任首席AI教育者。本文是Sebastian Raschka博士最新的2023年AI进展总结的翻译,大家参考。

2023/10/24 22:31:20685
#2023报告#大模型总结
如何提高大语言模型作为Agent的能力?清华大学与智谱AI推出AgentTuning方案

如何提高大语言模型作为Agent的能力?清华大学与智谱AI推出AgentTuning方案

尽管开源的大语言模型发展非常迅速,但是,在以大语言模型作为核心的新一代AI Agent解决方案上,开源大语言模型比商业模型表现要明显地差。为了提高大语言模型作为AI Agent的表现和能力,清华大学和智谱AI推出了一种新的方案,AgentTuning,可以将有效增强开源大语言模型作为AI Agent的能力。

2023/10/24 20:33:261,993
#AgentTuning#AIAgent#智能体
大模型泛化能力详解:大模型泛化能力分类、泛化能力来源和泛化研究的方向

大模型泛化能力详解:大模型泛化能力分类、泛化能力来源和泛化研究的方向

关于什么是好的泛化、存在哪些类型的泛化以及在不同的场景中哪些应该被优先考虑,人们对此了解甚少且意见不一。而MetaAI等机构的研究人员最近发布了一篇关于大模型泛化能力的综述,详细总结了大模型泛化能力的分类等。本篇论文详细总结一下大模型的泛化能力分类以及什么样的泛化是未来的中的重点等问题。

2023/10/24 18:10:137,870
#Generalisation#大模型#泛化能力
聊天大模型的输出速度应该是多少?单张显卡最多可以支持多少个人同时聊天?来自贾扬清最新的讨论

聊天大模型的输出速度应该是多少?单张显卡最多可以支持多少个人同时聊天?来自贾扬清最新的讨论

大模型应用中一个非常重要的问题就是大模型的响应速度。尤其是作为聊天应用来说,在用户输入之后,大模型可以在多短的时间内给出回应对于用户体验来说影响巨大。这里有2个问题经常会被大家所关注,一个是大模型每秒输出多少个tokens就可以满足用户的日常聊天使用,另一个问题是单张显卡最多可以支撑多少个用户的聊天需求。在前几天的vllm meetup上,贾扬清给出了一些讨论,他认为我们目前可能高估了大模型的聊天应用成本。

2023/10/10 23:35:252,165
#大模型性能#大模型聊天速度
让大模型支持更长的上下文的方法哪个更好?训练支持更长上下文的模型还是基于检索增强?

让大模型支持更长的上下文的方法哪个更好?训练支持更长上下文的模型还是基于检索增强?

在大语言模型中,上下文长度是指模型可以考虑的输入数据的数量。更长的上下文在大语言模型的实际应用中有非常重要的价值。当前,让大语言模型支持更长的上下文有两种常用的方法,一种是训练支持更长上下文长度的模型,扩展模型的输入,另外一种是检索增强生成的方法(Retrieval Augmentation Generation,RAG)。但二者应该如何选择,这是一个很少能直接比较的问题。为此,英伟达(Nvidia)的研究人员做了一个详细的比较。

2023/10/10 15:28:482,355
#long-context#大语言模型#检索增强生成
解决大语言模型的长输入限制:MetaAI发布MegaByte最高支持几百万上下文输入!

解决大语言模型的长输入限制:MetaAI发布MegaByte最高支持几百万上下文输入!

尽管OpenAI的ChatGPT很火爆,但是这类大语言模型有一个非常严重的问题就是对输入的内容长度有着很大的限制。例如,ChatGPT-3.5的输入限制是4096个tokens。MetaAI在前几天提交了一个论文,提出了MegaByte方法,几乎可以让模型接受任意长度的限制!

2023/10/09 22:43:093,725
#long-context#MegaByte#长上下文
华为大模型生态重要一步!PyTorch最新2.1版本宣布支持华为昇腾芯片(HUAWEI Ascend)

华为大模型生态重要一步!PyTorch最新2.1版本宣布支持华为昇腾芯片(HUAWEI Ascend)

大模型的发展一个重要的基础条件是底层硬件计算能力的大幅提高,特别是GPU的发展,与transformer架构的大模型训练非常契合。当前全球最大的GPU供应商英伟达系列的显卡几乎垄断了大模型训练与推理的所有GPU芯片市场。除了英伟达显卡本身算力强悍外,基于英伟达GPU之上构建的CUDA、PyTorch等平台软件生态也是非常重要的一环。而最新的PyTorch2.1版本发布的一个beta特性中包含了对华为昇腾芯片的原生支持,这也是大模型生态多样性发展的一个很重要的信号。

2023/10/09 11:45:032,718
#NPU#PyTorch#华为
阿里开源最新Qwen-14B:英文理解能力接近LLaMA2-70B,数学推理能力超过GPT-3.5!

阿里开源最新Qwen-14B:英文理解能力接近LLaMA2-70B,数学推理能力超过GPT-3.5!

通义千问是阿里巴巴推出的一个大语言模型,此前开源的Qwen-7B引起了广泛的关注,因为他的理解能力很强但是参数规模很小,因此受到了很多人的欢迎。而目前再次开源全新的Qwen-14B的模型,参数规模142亿,但是它的理解能力接近700亿参数规模的LLaMA2-70B,数学推理能力超过GPT-3.5。

2023/09/26 11:55:131,576
#Qwen#Qwen-14B#通义千问
重磅!ChatGPT加入多模态能力,可以听语音、生成语音并理解图片了!

重磅!ChatGPT加入多模态能力,可以听语音、生成语音并理解图片了!

几分钟之前,OpenAI宣布ChatGPT支持多模态,目前已经支持语音的输入、语音的输出、理解图片的输入!不过目前似乎仅限于客户端~官方说的是未来2周内企业和Plus用户可以使用,后面会普及到其它用户!

2023/09/26 10:30:501,501
#ChatGPT#OpenAI#多模态
截止目前中文领域最大参数量的大模型开源:上海人工智能实验室开源200亿参数的书生·浦语大模型(InternLM 20B系列),性能提升非常明显!

截止目前中文领域最大参数量的大模型开源:上海人工智能实验室开源200亿参数的书生·浦语大模型(InternLM 20B系列),性能提升非常明显!

上海人工智能实验室是国内顶尖的人工智能实验室,此前在大模型领域,他们与商汤科技发布的书生·浦语系列在国内引起了很大的关注。此次,他们又开源了一个全新的200亿参数规模的大语言模型InternLM 20B,应该是截止目前中文领域开源的参数规模最大的一个大模型了。

2023/09/22 11:55:50784
#InternLM#InternLM20B#书生·浦语
DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。

2023/09/22 11:52:3812,663
#C-Eval#GSM8K#MMLU
LM-SYS开源包含人类偏好的3.3万条真实对话语料:可用于RLHF的训练过程!

LM-SYS开源包含人类偏好的3.3万条真实对话语料:可用于RLHF的训练过程!

LM-SYS全称Large Model Systems Organization,是由加利福尼亚大学伯克利分校的学生和教师与加州大学圣地亚哥分校以及卡内基梅隆大学合作共同创立的开放式研究组织。该团队在2023年3月份成立,目前的工作是建立大模型的系统,是聊天机器人Vicuna的发布团队。今天开源 了包含3.3万包含真实人类偏好的对话数据集和3000条专家标注的对话数据集:Chatbot Arena Conversation Dataset和MT-bench人工注释对话数据集。

2023/09/22 11:10:521,297
#ChatbotArenaConversationDataset#LM-SYS#RLHF数据集
OpenAI最新的文本生成图像大模型DALL·E3发布!生成的图像不忽略每一个细节的文本!

OpenAI最新的文本生成图像大模型DALL·E3发布!生成的图像不忽略每一个细节的文本!

DALL·E 系列是由 OpenAI 开发的一系列基于大型语言模型的文本到图像生成系统。它们的核心目标是将文本描述转化为高度精确的图像。DALL·E2在2022年4月发布,但是一直没有公开使用,一年半后的2023年9月21日,OpenAI发布第三代DALL·E3,并承诺将与ChatGPT集成。

2023/09/21 09:07:481,578
#DALL·E#DALL·E3#OpenAI
关于GPT-4的多模态版本最新消息:可能的代号是Gobi,也许会比Google下一代LLM的Gemini更早发布

关于GPT-4的多模态版本最新消息:可能的代号是Gobi,也许会比Google下一代LLM的Gemini更早发布

The Information最新消息透露OpenAI正在抓紧准备GPT-4多模态版本的发布,可能称为GPT4-Vision。

2023/09/20 11:23:28301
#Gemini#GPT-4-Vision#多模态
如何让大模型提取更有信息密度的文本摘要?SalesforceAI最新的密度链提示方法Chain of Density Prompting

如何让大模型提取更有信息密度的文本摘要?SalesforceAI最新的密度链提示方法Chain of Density Prompting

基于文本做文本摘要的时候,摘要所包含的信息密度是一个非常重要的问题。正常情况下我们希望文本摘要既能覆盖更多的重要信息,又要保持简洁和连贯。SalesforceAI与MIT等机构的研究人员联合发布了一个最新的Prompt技巧,称为密度链提示方法(Chain of Density Prompting),可以提取有信息含量的简洁摘要。

2023/09/19 11:52:441,259
#密度链#密度链提示#文本摘要
text-davinci-003后继者!OpenAI发布了一个新的补全大模型:GPT-3.5-Turbo-Instruct,完全的指令模型,没有聊天优化

text-davinci-003后继者!OpenAI发布了一个新的补全大模型:GPT-3.5-Turbo-Instruct,完全的指令模型,没有聊天优化

OpenAI最新发布了GPT-3.5-Turbo-Instruct,这是一款强大的指令遵循大模型。尽管官方没有发布官方博客介绍,但我们将在本文中详细探讨这一模型的特点以及其在人工智能领域的价值。

2023/09/19 10:09:303,657
#GPT-3.5-Turbo-Instruct#指令大模型
LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!

LangChain提升大模型基于外部知识检索的准确率的新思路:更改传统文档排序方法,用 LongContextReorder提升大模型回答准确性!

检索增强生成(Retrieval-augmented generation,RAG)是一种将外部知识检索与大型语言模型生成相结合的方法,通常用于问答系统。当前使用大模型基于外部知识检索结果进行问答是当前大模型与外部知识结合最典型的方式,也是检索增强生成最新的应用。然而,近期的研究表明,这种方式并不总是最佳选择,特别是当检索到的文档数量较多时,这种方式很容易出现回答不准确的情况。为此,LangChain最新推出了LongContextReorder,推出了一种新思路解决这个问题。

2023/09/17 22:46:444,145
#LangChain#LongContextReorder#RAG
Previous
1...131415...39
Next

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用神器!AI硬件基准测试库发布 Java多线程网络爬虫(时光网为例)Java入门基础笔记-8在线广告的紧凑分配方案(Optimal Online Assignment with Forecasts)Java入门基础笔记-5XLNet基本思想简介以及为什么它优于BERTDirichlet Tree Distribution(狄利克雷树分布)Context Arena:长上下文大模型评测基准介绍Google发布迄今为止公开可用的最大的多语言网络数据集MADLAD-400,覆盖419种语言

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介