DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: 大模型
Tag

Articles tagged "大模型"

A curated list of original AI and LLM articles related to "大模型", updated regularly.

Tags:#大模型
AI编码领域的转变:Karpathy的2026年反思与Boris Cherny的Claude Code团队回应

AI编码领域的转变:Karpathy的2026年反思与Boris Cherny的Claude Code团队回应

Andrej Karpathy预测2026年AI将主导软件编码工作流,带来巨大效率提升,但可能引发低质代码泛滥(slopacolypse)。Anthropic的Boris Cherny以Claude Code团队实践回应,展示近100% AI生成代码、通用工程师招聘策略,以及通过模型迭代有效控制质量问题。

2026/01/29 08:47:1434
#AIAgent#AndrejKarpathy#Boris
重磅!Kimi K2.5发布,依然免费开源!原生多模态MoE架构,全球最大规模参数的开源模型之一,官方评测结果比肩诸多闭源模型!可以驱动100个子Agent执行!

重磅!Kimi K2.5发布,依然免费开源!原生多模态MoE架构,全球最大规模参数的开源模型之一,官方评测结果比肩诸多闭源模型!可以驱动100个子Agent执行!

2026年1月27日,月之暗面(Moonshot AI)发布新一代模型Kimi K2.5。根据官方说明,这是Kimi K2的后续版本,目前已通过Kimi.com网页端和App向用户推送。该模型同步上线Kimi API开放平台及编程助手Kimi Code,模型权重与相关代码也在Hugging Face开源。

2026/01/27 17:27:05178
#K2#K2.5#Kimi
看特斯拉前AI总监、OpenAI前知名研究员Andrej Karpathy如何看AI大模型编程(Claude Code这样的工具):AI Agent正在重塑编码工作流,2026年的软件工程大变革

看特斯拉前AI总监、OpenAI前知名研究员Andrej Karpathy如何看AI大模型编程(Claude Code这样的工具):AI Agent正在重塑编码工作流,2026年的软件工程大变革

本文整理了 Andrej Karpathy 在 2025 年底关于 AI Agent 编程的核心观点。基于其使用 Claude Code 等大模型的真实工程经验,Karpathy 认为软件工程正从“手动编码”转向“由 AI Agent 执行、人类定义目标与约束”的新范式。文章同时分析了 AI Agent 在效率提升之外带来的工程风险、技能退化与内容质量问题,并指出 2026 年将是行业系统性消化 AI Agent 能力的关键一年。

2026/01/27 08:49:43148
#AIAgent#AndrejKarpathy#ClaudeCode
Clawdbot到底是啥?能做什么?可以替代Claude Cowork吗?我花了 40 小时深扒 Clawdbot:全是干货,包括那些他们没告诉你的真相

Clawdbot到底是啥?能做什么?可以替代Claude Cowork吗?我花了 40 小时深扒 Clawdbot:全是干货,包括那些他们没告诉你的真相

最近这几天,如果你的 X (Twitter) 首页被 Clawdbot 刷屏了,不用惊讶,主要是太火了。但是这个软件的使用有一定门槛,而且争议比较大。X上有一位博主分享了他对这个东西的看法和使用经验,挺详细的,对于想了解Clawdbot是啥的,这个文章不错。大家看也可以从这个文章看到Clawdbot能做什么,和Cowork对比有啥优点和缺点

2026/01/26 13:21:32710
#Clawdbot#Cowork#大模型助手
阿里通义千问团队首次开源语音合成大模型:Qwen3-TTS:总共5个模型,最小的仅0.6B参数规模,最大1.8B参数

阿里通义千问团队首次开源语音合成大模型:Qwen3-TTS:总共5个模型,最小的仅0.6B参数规模,最大1.8B参数

就在刚刚,阿里开源了全新的语音合成大模型Qwen3-TTS系列!本次开源的语音合成模型共5个版本,最小的仅0.6B参数规模,最大的模型参数也就1.7B,基本上手机端都可以运行。此次发布不仅在性能上宣称超越了许多商业级闭源模型(如 OpenAI 的 GPT-4o-Audio 和 ElevenLabs),更重要的这应该是阿里通义千问团队首次开源语音合成系列大模型。

2026/01/22 22:22:53270
#Qwen#Qwen3-TTS#语音克隆
MMEB:多模态嵌入基准评测,用于测试多模态向量检索和排序准确性的基准

MMEB:多模态嵌入基准评测,用于测试多模态向量检索和排序准确性的基准

MMEB(Massive Multimodal Embedding Benchmark)是一个用于评估多模态嵌入模型的基准测试框架。该基准最初聚焦于图像-文本嵌入,并在后续版本中扩展到文本、图像、视频和视觉文档输入。MMEB通过收集多样化数据集,提供一个统一的评估平台,用于测试模型在分类、检索和其他任务上的性能。

2026/01/09 09:43:40225
#多模态嵌入评测#大模型评测#大模型评测基准
大模型工具使用的三次进化:从 Function Calling 到程序化编排

大模型工具使用的三次进化:从 Function Calling 到程序化编排

本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。

2026/01/08 22:08:57366
#AIAgent#FunctionCalling#PTC
为什么大模型企业都在强调可以连续工作XX小时的Agent和模型?长时运行Agent解析(Long-Running Agents)

为什么大模型企业都在强调可以连续工作XX小时的Agent和模型?长时运行Agent解析(Long-Running Agents)

AI Agent 的一个关键趋势正在浮现:从“快速回答问题”转向“长时间稳定执行复杂任务”。本文系统梳理了为什么 Anthropic、OpenAI 等企业开始强调“长时运行 Agent”,并解释其真实含义并非模型一直思考,而是通过作业化、异步执行、可恢复运行和动态上下文管理,实现跨会话完成复杂目标。文章深入对比了长时 Agent 与传统脚本化 LLM Loop 的本质差异,分析其在自治能力、上下文工程、耐久执行与治理上的核心价值,并总结构建长时运行 AI Agent 所需的关键技术等。

2026/01/04 23:01:19415
#AIAgent#Long-RunningAgents#大模型应用
在大模型时代,AI 产品为什么更难复用?AI Agent产品应该如何开发?来自 Manus 的3个工程实践经验

在大模型时代,AI 产品为什么更难复用?AI Agent产品应该如何开发?来自 Manus 的3个工程实践经验

本文基于 Manus 一线工程成员的真实实践,总结并分析了 大模型时代 AI 产品在工程与复用层面发生的关键变化。文章并不关注模型参数或算法细节,而是聚焦于真实生产环境中的工程问题:功能交付的责任边界如何变化、为何原型验证比完整规划更重要,以及在 Agent 系统中个人角色与系统边界如何被重新定义。这些经验揭示了一个趋势——在大模型具备“执行能力”之后,AI 产品的可用性越来越依赖工程体系本身,而非模型能力本身。本文适合关注 AI 工程实践、Agent 架构以及大模型落地问题的技术读者参考。

2025/12/28 20:44:13315
#AIAgent经验#AI产品#大模型应用
Context Arena:长上下文大模型评测基准介绍

Context Arena:长上下文大模型评测基准介绍

Context Arena 是一个专注于评估大语言模型长上下文处理能力的基准平台。它基于 OpenAI 发布的 Multi-Round Coreference Resolution (MRCR) 数据集,提供交互式排行榜,用于比较不同模型在复杂长对话中的信息检索和理解性能。该基准强调模型在长上下文下的实际表现,避免单纯依赖训练数据记忆。

2025/12/27 10:42:00437
#ContextArena#大模型评测#大模型评测基准
2025年的大模型训练和大模型应用与之前有什么差别?来自前OpenAI研究人员、特斯拉FSD负责人Andrej Karpathy的年度总结:2025年6个大模型不一样的地方

2025年的大模型训练和大模型应用与之前有什么差别?来自前OpenAI研究人员、特斯拉FSD负责人Andrej Karpathy的年度总结:2025年6个大模型不一样的地方

昨天,Karpathy 发布了《2025 LLM Year in Review》,对过去一年大模型领域发生的结构性变化进行了深度复盘。在这篇总结中,他不再纠结于具体的模型参数,而是将目光投向了推理范式的演进、Agent 的真实形态以及一种被称为“Vibe Coding”的新型开发模式。

2025/12/21 21:10:17590
#RLHF#RLVR#大模型洞察
基于可验证奖励的强化学习(Reinforcement Learning with Verifiable Rewards, RLVR)的介绍:为什么 2025 年,大模型训练的重心开始发生迁移?

基于可验证奖励的强化学习(Reinforcement Learning with Verifiable Rewards, RLVR)的介绍:为什么 2025 年,大模型训练的重心开始发生迁移?

过去几年,大语言模型的训练路线相对稳定:更大的模型、更长的预训练、更精细的指令微调与人类反馈对齐。这套方法在很长一段时间内持续奏效,也塑造了人们对“模型能力如何提升”的基本认知。但在 2025 年前后,一种并不算新的训练思路突然被推到台前,并开始占据越来越多的计算资源与工程关注度,这就是**基于可验证奖励的强化学习(Reinforcement Learning from Verifiable Rewards,RLVR)**。

2025/12/21 15:14:29682
#RLHF#RLVR#大模型训练
Minion Skills: Claude Skills的开源实现

Minion Skills: Claude Skills的开源实现

本文介绍了 Claude 最近推出的 Skills 系统,以及作者在 Minion 框架中实现的一个完全开源的版本。Skills 的核心思路是让 AI Agent 在需要时再加载对应的专业能力,而不是一开始就把所有工具和知识都塞进上下文,从而缓解上下文窗口有限、成本高、响应慢的问题。

2025/12/17 22:06:31631
#Agent技巧#ClaudeSkills#大模型Agent框架
智谱发布 GLM-ASR(闭源)与开源 1.5B GLM-ASR-Nano-2512:针对中文与方言场景的语音识别尝试

智谱发布 GLM-ASR(闭源)与开源 1.5B GLM-ASR-Nano-2512:针对中文与方言场景的语音识别尝试

就在刚才,智谱推出了两个语音识别模型:闭源的 GLM-ASR 和开源的 GLM-ASR-Nano-2512。与过去他们更多关注通用大模型或多模态模型不同,这次聚焦的是语音转文字(ASR)任务,尤其面向中文语境、方言与复杂环境。以下是对这两款模型已知公开资料的整理与分析。

2025/12/10 11:10:41619
#ASR#GLM-ASR#多模态大模型
大模型到底能否真正提升写代码效率?Anthropic 内部 20 万条数据首次公开大模型在真实代码工作流中的表现

大模型到底能否真正提升写代码效率?Anthropic 内部 20 万条数据首次公开大模型在真实代码工作流中的表现

大模型究竟能否真正提升工程师的编码效率?Anthropic 最近发布的一份重量级内部研究给出了少见的、基于真实工程环境的数据答案。研究覆盖 132 名工程师、53 场深度访谈,以及 20 万条 Claude Code 使用记录,展示了 AI 在软件工程中的实际作用:从生产力显著提升(人均合并 PR 数同比增长 67%)、任务空间扩张(27% 的 Claude 工作原本不会被执行),到工程师技能版图、协作方式与职业路径的深刻变化。与此同时,研究也揭示了技能萎缩、监督负担、工作流变化等新挑战。这是一份罕见的“

2025/12/04 22:37:32619
#大模型应用#大模型技术
Ilya Sutskever访谈深度解读:关于大模型的瓶颈、人类智能的优势、模型泛化不足以及5-20年后超级智能会出现的真正问题

Ilya Sutskever访谈深度解读:关于大模型的瓶颈、人类智能的优势、模型泛化不足以及5-20年后超级智能会出现的真正问题

这篇文章基于 Dwarkesh Patel 对 SSI 创始人、前 OpenAI 首席科学家 Ilya Sutskever 的长访谈,系统梳理了他对模型泛化、人类智能结构、持续学习、RL 与预训练局限、超级智能路径、对齐策略,以及 AI 未来经济与治理的整体判断。文章不仅整理了核心观点,也结合具体原文展开解读,呈现 Ilya 如何从“人类为何能泛化”这一根问题出发,重新思考下一代智能系统应当如何构建。

2025/12/03 08:19:14285
#大模型应用#大模型技术
Tool Decathlon:大模型工具使用能力基准测试

Tool Decathlon:大模型工具使用能力基准测试

Tool Decathlon(简称 Toolathlon)是一个针对语言代理的基准测试框架,用于评估大模型在真实环境中使用工具执行复杂任务的能力。该基准涵盖32个软件应用和604个工具,包括日常工具如 Google Calendar 和 Notion,以及专业工具如 WooCommerce、Kubernetes 和 BigQuery。它包含108个任务,每个任务平均需要约20次工具交互。该框架于2025年10月发布,旨在填补现有评测在工具多样性和长序列执行方面的空白。通过执行式评估,该基准提供可靠的性能指

2025/12/02 14:40:28261
#大模型工具使用#大模型评测#大模型评测基准
复杂问题推理能力大幅提升,DeepSeekAI发布DeepSeek V3.2正式版本以及一个评测结果可以媲美Gemini 3.0 Pro的将开源模型推到极限性能的DeepSeek-V3.2-Speciale模型

复杂问题推理能力大幅提升,DeepSeekAI发布DeepSeek V3.2正式版本以及一个评测结果可以媲美Gemini 3.0 Pro的将开源模型推到极限性能的DeepSeek-V3.2-Speciale模型

几个小时前,DeepSeek 突然发布了两款全新的推理模型:DeepSeek V3.2 正式版与DeepSeek V3.2-Speciale。前者已经全面替换官方网页、App 与 API 成为新的默认模型;后者则以“临时研究 API”的方式开放,被定位为极限推理版本。

2025/12/01 23:38:17316
#DeepSeekV3.2#DeepSeekV3.2-Speciale#国产大模型
大模型能不能写 PPT?AI 办公如何真正落地?以办公小浣熊为例,看一种更自然的大模型办公方式正在出现

大模型能不能写 PPT?AI 办公如何真正落地?以办公小浣熊为例,看一种更自然的大模型办公方式正在出现

AI 能不能替我做报告”几乎成了办公室里出现频率最高的疑问之一。模型能力的提升有目共睹,API 的边界也在持续扩张,但回到日常,那些真正让人感到疲惫的依旧是最具体的任务:一份复盘写到深夜,一个 PPT 改了十几版,一张 Excel 来回分析到眼花。它们看似普通,却占据了知识工作中惊人比例的时间。本文主要看一下办公小浣熊这个颇具代表性的大模型应用落地思路。

2025/11/28 10:55:12166
#大模型办公#大模型应用#大模型技术
AipexBase:让 AI 生成的应用真正能跑起来的国产开源AI后端底座

AipexBase:让 AI 生成的应用真正能跑起来的国产开源AI后端底座

最近 Vibe Coding 的概念越来越热,尤其是 Gemini 3 Pro 发布后,很多人都在说:“现在做网站和 App,好像一句话就能生成。” 界面生成、交互补全、流程搭建这些事情确实越来越轻松,模型能在很短时间内产出一个“看起来完整”的应用原型。一个国产开源项目就在尝试解决这个问题,它就是 AipexBase。

2025/11/27 21:04:40240
#大模型应用
Anthropic 最新 Agent 工程方案:使用双 Agent 架构让 AI 实现真正的长时自主工作

Anthropic 最新 Agent 工程方案:使用双 Agent 架构让 AI 实现真正的长时自主工作

就在昨天,Anthropic 发布了一套非常重要的工程方案,专门针对这些挑战而设计:基于“Initializer Agent + Coding Agent”的双 Agent 架构。

2025/11/27 20:34:30884
#AIAgent#大模型应用#大模型技术
Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

Terminal-Bench 评测全解析:一个用于评测大模型在终端环境使用工具能力的评测基准以及Terminal 1.0与 2.0 的完整对比

本文介绍 Terminal-Bench 的设计理念,深入讲解 core、Terminal-Bench Hard 与最新 Terminal-Bench 2.0 的区别,帮助开发者选择合适的 AI 终端评测基准。

2025/11/24 14:11:54528
#大模型Agent能力评测#大模型评测#大模型评测基准
如何让Nano Banana Pro生成更好的图片?Nano Banana Pro 提示词写作官方教程

如何让Nano Banana Pro生成更好的图片?Nano Banana Pro 提示词写作官方教程

Google 最新推出的 Nano Banana Pro(Gemini 3 Pro Image) 不只是一次“图像质量提升”,而是让普通用户也能借助专业级提示词,生成具备排版、构图、品牌、摄影语言的作品。 在这个版本中,最关键的能力不是模型本身,而是: 它对结构化、专业化 Prompt 的响应能力非常强。 写对提示词,效果天差地别。 本文将完全聚焦于: 怎么写提示词,才能让 Nano Banana Pro 生出最好的图。

2025/11/21 01:21:06469
#Google#NanoBanana#NanoBananaPro
重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!

重磅!谷歌发布 Nano Banana Pro(Gemini 3 Pro Image):图像生成质量大幅提升!一次可以支持14张图片合成,5个对象保持一致!图像生成正式进入“理解驱动”阶段!

就在刚才,谷歌推出了 Nano Banana Pro(Gemini 3 Pro Image)。这是基于 Gemini 3 Pro 打造的专业级图像生成与编辑模型,相比几个月前的 Nano Banana,这次升级几乎重构了谷歌图像生成能力的上限。从文本渲染、多图一致性,到世界知识、摄影级控制和信息可视化,Nano Banana Pro 在多个维度显著拉开了与上一代、乃至整个行业同类产品的差距。

2025/11/21 00:52:53593
#Google#NanoBanana#NanoBananaPro
12...15
Next

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

Google开源多模态大模型Gemma3n的正式版:重新定义端侧AI的多模态能力,10B(100亿)参数以下最强多模态大模型,一个月前的预览版正式转正常见的正则表达式写法总结阿里巴巴开源第二代大语言模型Qwen2系列,最高参数规模700亿,评测结果位列开源模型第一,超过了Meta开源的Llama3-70B!财大气粗!英伟达官方AI Playground提供可以免费使用的Stable Diffusion XL、LLaMA2、CLIP等模型为什么Python可以处理任意长度的整数运算——Python原理详解机器学习之正则化项复杂问题推理能力大幅提升,DeepSeekAI发布DeepSeek V3.2正式版本以及一个评测结果可以媲美Gemini 3.0 Pro的将开源模型推到极限性能的DeepSeek-V3.2-Speciale模型Java入门基础笔记-5如何评估向量大模型在多种任务上的表现?Massive Text Embedding Benchmark(MTEB)评测介绍Generative Adversarial Networks 生成对抗网络的简单理解

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介