DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
Original Blog

Original AI Tech Blogs

Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

Sort by
Sort by DateSort by Views
全球最大10个的SaaS企业简介

全球最大10个的SaaS企业简介

现代软件企业中,SaaS服务提供商是最值得注意的企业。因为SaaS行业规模大利润高,也是最有前景的一类企业。但是,国内市场因为很多因素导致SaaS的规模和空间都比较低。本文梳理一下全球最大的10个SaaS服务提供商,供大家参考。

2021/12/08 22:58:162,850
#云计算#创业企业
块级元素和行内元素以及转换

块级元素和行内元素以及转换

2018/10/09 13:38:012,847
#块级元素和行内元素
【转载】全面解读ICML 2017五大研究热点 | 腾讯AI Lab独家解析

【转载】全面解读ICML 2017五大研究热点 | 腾讯AI Lab独家解析

腾讯AI Lab去年四月成立,今年是首次参加ICML,共计四篇文章被录取,位居国内企业前列。此次团队由机器学习和大数据领域的专家、腾讯AI Lab主任张潼博士带领到场交流学习,张潼博士还担任了本届ICML领域主席。在本次130人的主席团队中,华人不超过10位,内地仅有腾讯AI Lab、清华大学和微软研究院三家机构。

2017/11/04 09:36:192,840
#学术#科研
HuggingFace开源语音识别模型Distil-Whisper,基于OpenAI的Whisper-V2模型蒸馏,速度快6倍,参数小49%!

HuggingFace开源语音识别模型Distil-Whisper,基于OpenAI的Whisper-V2模型蒸馏,速度快6倍,参数小49%!

语音识别在实际应用中有非常多的应用。早先,OpenAI发布的Whisper模型是目前语音识别模型中最受关注的一类,也很可能是目前ChatGPT客户端语音识别背后的模型。HuggingFace基于Whisper训练并开源了一个全新的Distil-Whisper,它比Whisper-v2速度快6倍,参数小49%,而实际效果几乎没有区别。

2023/11/02 12:44:252,828
#Distil-Whisper#HuggingFace
Jsoup使用演示

Jsoup使用演示

网络爬虫

2016-04-06 21:32:562,821
#JAVA#网络爬虫
大型语言模型的新扩展规律(DeepMind新论文)——Training Compute-Optimal Large Language Models

大型语言模型的新扩展规律(DeepMind新论文)——Training Compute-Optimal Large Language Models

3月29日,DeepMind发表了一篇论文,"Training Compute-Optimal Large Language Models",表明基本上每个人--OpenAI、DeepMind、微软等--都在用极不理想的计算方式训练大型语言模型。论文认为这些模型对计算的使用一直处于非常不理想的状态。并提出了新的模型缩放规律。

2022/04/04 13:14:092,812
#deepmind#论文快讯
智谱AI与清华大学联合发布第三代基座大语言模型ChatGLM3:6B版本的ChatGLM3能力大幅增强,依然免费商用授权!

智谱AI与清华大学联合发布第三代基座大语言模型ChatGLM3:6B版本的ChatGLM3能力大幅增强,依然免费商用授权!

ChatGLM系列是智谱AI发布的一系列大语言模型,因为其优秀的性能和良好的开源协议,在国产大模型和全球大模型领域都有很高的知名度。今天,智谱AI开源其第三代基座大语言模型ChatGLM3-6B,官方说明该模型的性能较前一代大幅提升,是10B以下最强基础大模型!

2023/10/27 17:13:142,808
#ChatGLM#ChatGLM3
HttpClient的使用方法案例

HttpClient的使用方法案例

HttpClient的使用方法案例 爬虫

2016-04-06 21:32:332,792
#Java#网络爬虫
!important属性和权重

!important属性和权重

2018/10/07 21:42:062,790
#!important和权重
智谱AI发布第二代CodeGeeX编程大模型:CodeGeeX2-6B,最低6GB显存可运行,基于ChatGLM2-6B微调

智谱AI发布第二代CodeGeeX编程大模型:CodeGeeX2-6B,最低6GB显存可运行,基于ChatGLM2-6B微调

编程大模型是大语言模型的一个非常重要的应用。刚刚,清华大学系创业企业智谱AI开源了最新的一个编程大模型,CodeGeeX2-6B。这是基于ChatGLM2-6B微调的针对编程领域的大模型。

2023/07/25 15:26:412,790
#ChatGLM2-6B#CodeGeeX
是否需要使用NumPy代替Pandas处理数据以提高性能?

是否需要使用NumPy代替Pandas处理数据以提高性能?

Pandas和NumPy是Python数据科学领域中最基础的两个库,他们都可以读取大量的数据并对数据做计算等处理。有很多的操作他们都能做。那么,这两个Python库在数据处理的性能上有什么差别呢?今天在Reddit上看到一个有意思的讨论和大家分享一下。

2021/12/11 19:50:592,784
#numpy#pandas
来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解

来自Microsoft Build 2023:大语言模型是如何被训练出来的以及语言模型如何变成ChatGPT——State of GPT详解

在今年的Microsoft Build 2023大会上,来自OpenAI的研究员Andrej Karpathy在5月24日的一场汇报中用了40分钟讲解了ChatGPT是如何被训练的,其中包含了训练一个能支持与用户对话的GPT的全流程以及涉及到的一些技术。信息含量丰富,本文根据这份演讲总结。

2025/12/21 17:20:242,777
#LLM#RLHF
对比关系生成模型(Comparative Relation Generative Model)

对比关系生成模型(Comparative Relation Generative Model)

2018/03/09 09:00:212,771
#生成模型
python中Scrapy的安装详细过程

python中Scrapy的安装详细过程

python中Scrapy的安装详细过程

2016-09-18 08:30:302,770
#python#网络爬虫
Pseudo-document-based Topic Model(基于伪文档的主题模型)的理解以及源码解读

Pseudo-document-based Topic Model(基于伪文档的主题模型)的理解以及源码解读

2018/04/20 22:13:522,770
#源码
2023年9月份各大企业拥有的A100的GPU显卡数量

2023年9月份各大企业拥有的A100的GPU显卡数量

在高性能计算(HPC)、人工智能(AI)、和数据分析等领域,图形处理器(GPUs)正在发挥越来越重要的作用。其中,NVIDIA的 A100尤为引人注目。这是英伟达最强大的显卡处理器,也是当前使用最广泛大模型训练用的显卡。本文主要是各大企业最新的2023年9月份拥有的显卡数量统计。

2023/09/16 14:08:582,770
#A100#显卡
Stable Diffusion2.1发布!

Stable Diffusion2.1发布!

刚刚,StabilityAI宣布Stable Diffusion2.1发布。距离Stable Diffusion2.0大版本发布刚2个星期,2.1版本就发布了,2.1版本有诸多改进功能。

2022/12/08 00:33:512,764
#StabilityAI#StableDiffusion
网络爬虫之java基础篇QueryRunner(Ⅲ)

网络爬虫之java基础篇QueryRunner(Ⅲ)

网路爬虫数据库操作

2016-09-08 22:10:022,760
#Java#数据库
康奈尔大学发布可以在一张消费级显卡上微调650亿参数规模大模型的框架:LLMTune

康奈尔大学发布可以在一张消费级显卡上微调650亿参数规模大模型的框架:LLMTune

Cornell Tech开源了LLMTune,这是一个可以在消费级显卡上微调大模型的框架,经过测试,可以在48G显存的显卡上微调4bit的650亿参数的LLaMA模型!

2023/05/14 23:42:572,759
#PEFT#大模型微调
神器!AI硬件基准测试库发布

神器!AI硬件基准测试库发布

2019/06/30 21:14:312,757
#人工智能
如何用7.7亿参数的蒸馏模型超过5400亿的大语言模型——Google提出新的模型蒸馏方法:逐步蒸馏(Distilling step-by-step)详解

如何用7.7亿参数的蒸馏模型超过5400亿的大语言模型——Google提出新的模型蒸馏方法:逐步蒸馏(Distilling step-by-step)详解

华盛顿大学研究人员与Google的研究人员一起在5月3日公布了一个新的方法,即逐步蒸馏(Distilling step-by-step),这个方法最大的特点有2个:一是需要更少的数据来做模型的蒸馏(根据论文描述,平均只需要之前方法的一半数据,最多只需要15%的数据就可以达到类似的效果);而是可以获得更小规模的模型(最多可以比原来模型规模小2000倍!)

2023/05/05 22:03:052,752
#模型蒸馏
margin

margin

2018/10/11 22:17:042,744
#margin
华为大模型生态重要一步!PyTorch最新2.1版本宣布支持华为昇腾芯片(HUAWEI Ascend)

华为大模型生态重要一步!PyTorch最新2.1版本宣布支持华为昇腾芯片(HUAWEI Ascend)

大模型的发展一个重要的基础条件是底层硬件计算能力的大幅提高,特别是GPU的发展,与transformer架构的大模型训练非常契合。当前全球最大的GPU供应商英伟达系列的显卡几乎垄断了大模型训练与推理的所有GPU芯片市场。除了英伟达显卡本身算力强悍外,基于英伟达GPU之上构建的CUDA、PyTorch等平台软件生态也是非常重要的一环。而最新的PyTorch2.1版本发布的一个beta特性中包含了对华为昇腾芯片的原生支持,这也是大模型生态多样性发展的一个很重要的信号。

2023/10/09 11:45:032,722
#NPU#PyTorch
页面内锚点

页面内锚点

2018/09/29 20:58:342,712
#锚点
Previous
1...151617...39
Next

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Hot Blogs

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

Today's Picks

  • 重磅!ChatGPT加入多模态能力,可以听语音、生成语音并理解图片了!
  • OpenAI收入大揭秘:2024年收入40亿美金,2030年预计达到2000亿,年均复合增长超90%!ChatGPT占比将逐年下降!
  • 重磅数据集公布!LAION-400-Million Open Dataset免费的4亿条图像-文本对数据( LAION-400M:English (image, text) pairs)
  • Ubuntu 命令行 指定GPU 运行 Python 程序
  • 【转载】全面解读ICML 2017五大研究热点 | 腾讯AI Lab独家解析
  • GPT-5 模式与配额全解析:自动与手动 Thinking 的区别、不同用户的使用配额问题等
  • IFBench:大模型指令跟随能力评测基准详解
  • HMC(Hamiltonian Monte Carlo抽样算法详细介绍)