
强烈推荐!清华大学100亿参数规模的免费商用授权大模型:CPM-Bee 10B
最近几个月,国产大语言模型进步十分迅速。不过,大多数企业发布的大模型均为商业产品,少数开源的LLM则有较高的商业授权费用或者商用限制。对于希望使用LLM能力的中小企业以及个人来说都不是很合适。本次给大家介绍的是目前国产开源领域里面一个十分优秀且具有潜力的大语言模型CPM-Bee 10B。该模型来自清华大学NLP实验室,参数规模100亿,最重要的是对个人和企业用户均提供免费商用授权,十分友好!
加载中...
Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

最近几个月,国产大语言模型进步十分迅速。不过,大多数企业发布的大模型均为商业产品,少数开源的LLM则有较高的商业授权费用或者商用限制。对于希望使用LLM能力的中小企业以及个人来说都不是很合适。本次给大家介绍的是目前国产开源领域里面一个十分优秀且具有潜力的大语言模型CPM-Bee 10B。该模型来自清华大学NLP实验室,参数规模100亿,最重要的是对个人和企业用户均提供免费商用授权,十分友好!

为初学者、中级和有经验的开发者提供70多个python项目, 10000, 小木, PythonHub今天在推上给大家分享了一个非常棒的项目,就是这个为为初学者、中级和有经验的开发者提供70多个python项目。 亲自动手实践一些项目可以增加我们的实际的编程技巧。每一次都做一点将会得到很多。很多人都在GitHub、Reddit或者是Quera上搜索过哪些项目可以让Python初学者、中级者增加经验的Python项目。这次它来了。

Salesforce的研究人员开发了LAVIS(LAnguage-VISION的缩写),这是一个开源的库,用于在丰富的常见任务和数据集系列上训练和评估最先进的语言-视觉模型,并用于在定制的语言-视觉数据上进行现成的推理。

2022年11月底,OpenAI发布ChatGPT,2023年3月14日,GPT-4发布。这两个模型让全球感受到了AI的力量。而随着MetaAI开源著名的LLaMA,以及斯坦福大学提出Stanford Alpaca之后,业界开始有更多的AI模型发布。本文将对4月份发布的这些重要的模型做一个总结,并就其中部分重要的模型进行进一步介绍。

大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。

本文主要描述了阿里眼中国内各家企业的大模型水平以及一些硬件算力的判断,同时结合部分其它信息整理。里面涉及到当前国内各大企业模型水平判断(如百度文心一言、华为盘古等)以及算力储备信息。

eclipse创建导入项目的时候经常会发生各种错误。本篇博客将讲述常见的错误及其解决方案。

随着ChatGPT的火爆以及MetaAI开源了LLaMA,各家公司好像一夜之间都有了各种ChatGPT模型的研发实力。而针对不同任务和应用构建的LLM更是层出不穷。那么,如何选择合适的模型完成特定的任务,甚至是使用多个模型完成一个复杂的任务似乎仍然很困难。为此,浙江大学与微软亚洲研究院联合发布了一个大模型写作系统HuggingGPT,可以根据输入的任务帮我们选择合适的大模型解决!

今天,时隔一年后,OpenAI发布了第二代的DALL·E模型。相比较第一代的模型,DALL·E 2,以4倍的分辨率生成更真实和准确的图像。

Stable Diffusion是最近很火的Text-to-Image预训练模型(详细信息:https://www.datalearner.com/ai-resources/pretrained-models/stable-diffusion )。而现在,相关的视频教程已经出现。fast.ai的团队宣布了一门新的深度学习课程《From Deep Learning Foundations to Stable Diffusion》上线!

隐马尔可夫模型(HMM)是一种统计模型,也用于机器学习。它可以用来描述取决于内部因素的可观察事件的演变,而这些因素是无法直接观察到的。这是一类概率图形模型,允许我们从一组观察到的变量中预测一串未知的变量。在这篇文章中,我们将详细讨论隐马尔可夫模型。我们将了解它可以使用的背景,我们也将讨论它的不同应用。我们还将讨论HMM在PoS标签中的使用和python的实现。文章中所涉及的主要内容如下。

Tensorflow和PyTorch是深度学习最流行的两个框架,二者都有坚定的支持者。一般认为由于Google的支持,TensorFlow的社区支持比较好,在工业应用广泛。但是尽管有keras加持,但易用性方面依然被认为不如PyTorch。而后者最早由Facebook人工智能团队开发。由于其易用性,被认为在科学研究中有广泛使用。那么,最近几年二者发展如何,是否实际还如之前的观点一样,这里AssemblyAI的一个作者做了一些对比。

随着互联网的高速发展,人类进入了一个信息爆炸的时代,每个人的生活都充满了结构化和非结构化的数据。另外,随着以博客、社交网络、基于位置的服务LBS为代表的新型信息发布方式的不断涌现,以及云计算、物联网技术的兴起,数据正以前所未有的速度在不断地增长和积累,数据已经渗透到当今每一个行业和业务职能领域成为重要的产生因素,以数据为驱动的大数据时代已经不可避免地到来。本文主要围绕大数据特征、处理系统、以及大数据分析来阐述大数据环境下的数据分析在思想、流程、方法等方面的转变,以及围绕此主题而出现的相关关键技术与方法。

数据科学项目为我们提供了很好的机会提升我们的技能和知识。这篇博客提供了17个数据科学的项目,都是可以免费获取的项目,大家可以通过这些诶项目学习数据科学相关知识。