
计算机视觉领域的六大任务简介
计算机视觉与自然语言处理是近几年人工智能领域进步最快以及应用最为成熟的两个方向。计算机视觉里面任务涉及面广,有很多细分领域,本文将对计算机视觉领域中比较常见的六种任务进行总结并同时展示以下相关任务的一些成绩。
加载中...
Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

计算机视觉与自然语言处理是近几年人工智能领域进步最快以及应用最为成熟的两个方向。计算机视觉里面任务涉及面广,有很多细分领域,本文将对计算机视觉领域中比较常见的六种任务进行总结并同时展示以下相关任务的一些成绩。

ChatGPT的Code Interpreter插件让ChatGPT突破了大语言模型本身只能做文本处理的限制,使其可以通过生成并执行Python代码来实现强大的数据分析、图片生成、视频数据处理等操作,大大拓展了ChatGPT的实用范围和价值。在此前的文章中,我们已经分析了Code Interpreter插件的官方实现。而今天,LangChain的官方博客也推出了一种类似的开源方案,让开源模型也可以实现ChatGPT的Code Interperter插件。我们简要描述一下这个方案。

5月27日,OpenBMB发布了一个最高有100亿参数规模的开源大语言模型CPM-BEE,OpenBMB是清华大学NLP实验室联合智源研究院成立的一个开源组织。该模型针对高质量中文数据集做了训练优化,支持中英文。根据官方的测试结果,其英文测试水平约等于LLaMA-13B,中文评测结果优秀。

在Java中,自增是一种非常常见的操作,在自增中,有两种写法,一种是前缀自增(++i),一种是后缀自增(i++)。这里主要简单介绍两种自增的差别。

本文是Effective Java第三版笔记的第一个之创建静态工厂方法而不是使用构造器

通用人工智能(AGI)的进步需要可靠的评估基准。GPQA (Grade-Level Problems in Question Answering) Diamond 基准旨在衡量模型在需要深度推理和领域专业知识问题上的能力。该基准由纽约大学、CohereAI 及 Anthropic 的研究人员联合发布,其相关论文可在 arXiv 上查阅 (https://arxiv.org/pdf/2311.12022 )。GPQA Diamond是GPQA系列中最高质量的评测数据,包含198条结果。

Microsoft Visual C++ 14.0 is required

深度学习本质上是表示学习,它通过多层非线性神经网络模型从底层特征中学习出对具体任务而言更有效的高级抽象特征。针对一个具体的任务,我们往往会遇到这种情况:需要用一个模型学习出特征表示,然后将学习出的特征表示作为另一个模型的输入。这就要求我们会获取模型中间层的输出,下面以具体代码形式介绍两种具体方法。

马尔可夫链(Markov Chain)是由马尔可夫性质推导出来的一种重要的概率模型。马尔科夫链是一种离散时间的随机过程,作为现实世界的统计模型,有很多应用。在热力学、统计力学、排队理论、金融领域等都有重要的应用价值。 作为一种离散时间的随机过程,与其对应的模型是马尔可夫过程(Markov Process),这是一种连续时间随机过程的模型。本节将主要介绍马尔科夫链。

大语言模型(Large Language Model,LLM)是近几年进展最大的AI模型。早期的深度学习架构语言模型以RNN为主,现在则基本上转成了Transformer的架构。尽管如此,Transformer本身也是有着不同的区别。而本文是大语言模型系列中的一篇,主要介绍RNN模型与Transformer之间的区别。

在使用Dask进行两个dataframe的concatenate操作的时候抛出ValueError,本文记录这个错误以及解决方案。

原来直接用root账户授权远程访问失败,最新的MySQL8不允许直接创建并授权用户远程访问权限,必须先让自己有GRANT权限,然后创建用户,再授权。