DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
Original Blog

Original AI Tech Blogs

Explore the latest AI and LLM news and technical articles, covering original content and practical cases in machine learning, deep learning, and natural language processing.

Sort by
Sort by DateSort by Views
Gamma函数(伽玛函数)的一阶导数、二阶导数公式推导及java程序

Gamma函数(伽玛函数)的一阶导数、二阶导数公式推导及java程序

gamma函数的相关程序

2017/05/10 20:57:1411,425
#gamma函数
Java中矩阵运算(math3的使用)

Java中矩阵运算(math3的使用)

Java中矩阵运算(math3的使用)

2017-01-18 20:16:1111,442
#Java#矩阵运算
简单几步教你如何在搭建并使用DALL·E开源版本来基于文字生成图片

简单几步教你如何在搭建并使用DALL·E开源版本来基于文字生成图片

大规模的text-to-image模型没有公开预训练结果,OpenAI的意思就是我这玩意太厉害,随便放出来可能会被你们做坏事,而谷歌训练这个应该就是为了云服务挣钱,所以都没有公开可用的版本供大家玩耍。虽然业界有基于论文的实现,但是训练模型需要耗费大量的资源,没有开放的预训练结果,我们普通个人也很难玩起来。但是,大神Sahar提供了一个免费使用开源实现的text-to-image预训练模型的方式。

2022/06/12 18:44:5311,503
#Text-To-Image#图片生成
Hive的常用语法

Hive的常用语法

Hive的常用语法

2017/02/21 19:26:4411,553
#hive
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

2019/02/14 15:46:1012,182
#变分推断#指数分布族
标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法

标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法

在2016年,Szegedy等人提出了inception v2的模型(论文:Rethinking the inception architecture for computer vision.)。其中提到了Label Smoothing技术,可以提高模型效果。

2019/06/25 17:27:2412,379
#深度学习
自然语言处理中常见的10个任务简介及其资源

自然语言处理中常见的10个任务简介及其资源

这篇博客主要介绍了文本预处理的一般步骤以及常见的自然语言处理任务简介。

2017/11/04 09:28:4312,392
#NLP#文本处理
pandas的get_dummies方法在机器学习中的应用及其陷阱

pandas的get_dummies方法在机器学习中的应用及其陷阱

pandas.get_dummies是pandas中一种非常高效的方法。它最主要的作用是可以将分类变量转变成dummy变量,也就是虚拟变量。这篇博客将简要的介绍一下pandas.get_dummies()方法,并描述其在机器学习中的应用的一些注意事项。

2021/11/17 22:33:1412,420
#pandas#python
用stata做倾向值分析和匹配

用stata做倾向值分析和匹配

倾向值分析;stata; propensity score matching using stata

2017/11/13 21:45:3512,441
#备忘程序
多元正态(高斯)分布的贝叶斯推导(Bayesian Inference for the Multivariate Normal)

多元正态(高斯)分布的贝叶斯推导(Bayesian Inference for the Multivariate Normal)

多元正态(高斯)分布分布是我们最常用的分布之一,这篇博客的主要内容来自Will Penny的文章的翻译。主要讲述关于多元正态分布的贝叶斯推导

2017/11/04 09:29:3712,466
#多元正态分布#统计
DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

DataLearner大模型综合评测对比表!国产大模型与全球最强大模型大比拼:语义理解、数学推理同台竞技,究竟谁更厉害~

随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。

2023/09/22 11:52:3812,666
#C-Eval#GSM8K
人工智能初创企业Hugging Face是什么样的企业——HuggingFace简介

人工智能初创企业Hugging Face是什么样的企业——HuggingFace简介

Hugging Face是一家非常活跃的人工智能创业公司。它拥有一个非常强大并且活跃的人工智能社区。有超过5000多家机构都在Hugging Face的社区发布内容,包括Google AI、Facebook AI、微软等。自从2016年成立以来,这家企业经历了5轮融资,总共募集了6000万美金。本文将简要介绍这家企业相关的信息。

2021/11/10 21:14:5912,972
#人工智能#企业简介
大语言模型的指令微调(Instruction Tuning)最全综述:从数据集到技术全解析

大语言模型的指令微调(Instruction Tuning)最全综述:从数据集到技术全解析

当前的大语言模型主要是预训练大模型,在大规模无监督数据上训练之后,再经过有监督微调和对齐之后就可以完成很多任务。尽管如此,面对垂直领域的应用,大模型依然需要微调才能获得更好地应用结果。而大模型的微调有很多方式,包括指令微调、有监督微调、提示工程等。其中,指令微调(Instruction Tuning)作为改进模型可控性最重要的一类方法,缺少深入的研究。浙江大学研究人员联合Shannon AI等单位发布了一篇最新的关于指令微调的综述,详细描述指令微调的各方面内容。

2023/08/28 15:22:0513,049
#大模型微调#指令微调
JCR期刊中的ESCI是什么?它属于SCI索引吗?

JCR期刊中的ESCI是什么?它属于SCI索引吗?

很多童鞋在查询期刊的时候会发现某些期刊不是SCI(SCIE)索引,而是一个叫ESCI的索引。这似乎有点像SCI,但好像又有区别,所以大家会有疑问,本篇博客将解释二者的区别。

2022/04/18 19:41:0913,065
#ESCI#SCI
预训练大语言模型的三种微调技术总结:fine-tuning、parameter-efficient fine-tuning和prompt-tuning

预训练大语言模型的三种微调技术总结:fine-tuning、parameter-efficient fine-tuning和prompt-tuning

预训练大模型,尤其是大语言模型已经是当前最火热的AI技术。2018年Google发布BERT模型之后,fine-tuning技术也随之流行,即将预训练模型的权重冻结,然后根据具体任务进行微调变得十分有效且被应用在很多场景。而随着ChatGPT的火热,parameter-efficient fine-tuning和prompt-tuning技术似乎也有替代传统fine-tuning的趋势,本篇论文将简单描述预训练模型领域这三种微调技术及其差别。

2023/04/24 22:39:2613,281
#fine-tuning#prompt-tuning
深度学习之Encoder-Decoder架构

深度学习之Encoder-Decoder架构

深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。

2019/03/19 11:19:0413,340
#Encoder-Decoder#RNN
Python之numpy.argpartition

Python之numpy.argpartition

神秘的numpy.argpartition

2017/10/24 22:07:2913,445
#argpartition#Python
贝叶斯统计中的一些基本的概念和方法介绍

贝叶斯统计中的一些基本的概念和方法介绍

贝叶斯统计非常有用,也有一些基本的概念。这篇博客介绍了各种分布/概率的相关概念,并做了简单的介绍。

2017/06/19 16:00:4513,573
#统计#贝叶斯
如何估计大模型推理或者训练所需要的显存大小?HuggingFace官方工具Model Memory Calculator,一键计算大模型显存需求~

如何估计大模型推理或者训练所需要的显存大小?HuggingFace官方工具Model Memory Calculator,一键计算大模型显存需求~

大模型对显卡资源的消耗是很大的。但是,具体每个模型消耗多少显存,需要多少资源大模型才能比较好的运行是很多人关心的问题。此前,DataLearner曾经从理论上给出了大模型显存需求的估算逻辑,详细说明了大模型在预训练阶段、微调阶段和推理阶段所需的显存资源估计,而HuggingFace的官方库Accelerate直接推出了一个在线大模型显存消耗资源估算工具Model Memory Calculator,直接可以估算在HuggingFace上托管的模型的显存需求。

2023/09/01 18:09:1713,639
#Accelerate#ModelMemoryCalculator
Tensorflow中数据集的使用方法(tf.data.Dataset)

Tensorflow中数据集的使用方法(tf.data.Dataset)

Tensorflow中tf.data.Dataset是最常用的数据集类,我们也使用这个类做转换数据、迭代数据等操作。本篇博客将简要描述这个类的使用方法。

2019/06/22 16:04:2413,908
#python#tensorflow
最优化问题的KKT条件简要解释

最优化问题的KKT条件简要解释

KKT条件(Karush–Kuhn–Tucker conditions)是求解带不等式约束的最优化问题中非常重要的一个概念和方法。这篇博客将解释相关概念和操作。

2019/02/28 15:02:3613,994
#KKT条件#拉格朗日算子
keras解决多标签分类问题

keras解决多标签分类问题

multi-class classification problem和 multi-label classification problem在keras上的实现

2018/03/19 17:24:5314,236
#keras#multi-label
正则项的理解之正则从哪里来

正则项的理解之正则从哪里来

在机器学习或者深度学习中,正则项是我们经常遇到的概念。它对提高模型的准确性和泛化能力非常重要。本文详细描述了正则项的来源以及与其他概念的相关关系。

2017/11/06 17:02:1914,259
#人工智能#机器学习
AutoGPT是如何让GPT-4自动帮你完成任务的——最火的AutoGPT原理解析!

AutoGPT是如何让GPT-4自动帮你完成任务的——最火的AutoGPT原理解析!

最近几天AutoGPT十分火热,这是由开发者Significant Gravitas推出的项目。该项目可以根据你设置的目标,使用GPT-4自动帮你完成所有的任务。你只要提供OpenAI的API Key,保证里面有钱,那么它就可以根据你设定的目标,采用Google搜索、浏览网站、执行脚本等方式帮你完成目标。

2023/08/09 21:24:0614,401
#AIAgent#AutoGPT
Previous
1...36373839
Next

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Hot Blogs

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

Today's Picks

  • 重磅!第二代ChatGLM发布!清华大学THUDM发布ChatGLM2-6B:更快更准,更低成本更长输入!
  • 国产全球最长上下文大语言模型开源:XVERSE-13B-256K,一次支持25万字输入,免费商用授权~
  • 7种交叉验证(Cross-validation)技术简介(附代码示例)
  • MetaAI发布语音识别错误率是OpenAI的Whisper模型的一半且支持1107种语言的ASR模型:MMS
  • 大模型微调过程中的几个常见问题
  • 大模型到底能否真正提升写代码效率?Anthropic 内部 20 万条数据首次公开大模型在真实代码工作流中的表现
  • R语言数据库操作(不定时更新)
最新好课!从深度学习到stable diffusion的手把手入门教程