统计、机器学习与编程知识的原创博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

CNN经典算法之Inception V1(GoogLeNet)

GoogLeNet是谷歌在2014年提出的一种CNN深度学习方法,它赢得了2014年ILSVRC的冠军,其错误率要低于当时的VGGNet。与之前的深度学习网络思路不同,之前的CNN网络的主要目标还是加深网络的深度,而GoogLeNet则提出了一种新的结构,称之为inception。GoogLeNet利用inception结构组成了一个22层的巨大的网络,但是其参数却比之前的如AlexNet网络低很多。是一种非常优秀的CNN结构。

阅读 4927

深度学习技巧之Batch Normalization

Batch Normalization是深度学习中最重要的技巧之一。是由Sergey Ioffe和Christian Szeged创建的。Batch Normalization使超参数的搜索更加快速便捷,也使得神经网络鲁棒性更好。本篇博客将简要介绍相关概念和原理。

阅读 4991

大模型驱动的自动代理(AI Agent):将语言模型的能力变成通用能力的一种方式——来自OpenAI安全团队负责人的解释与观点

当前大模型本质是一种大语言模型(Large Language Models, LLM),其核心能力是对语言的处理。良好的意图识别和文本生成能力让LLM超越了之前的模型,有了巨大的实用价值。但是,现实问题涉及了很多超越语言模型之外的能力,如基于最新数据的文本摘要、向用户提供实时数据分析和可视化结果、为代码提供debugging等。目前,让LLM解决这些问题的一个最有前景的方向就是建立大模型驱动的自动代理。也就是让LLM作为核心控制者来学会使用不同工具,进而完成最终任务。

阅读 5068

用python生成随机数的几种方法

本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码。

阅读 5132

ItemCF--Python

基于项目最近邻的协同过滤算法,面向的是隐偏好数据,数据格式为,测试算法的指标为precision和recall

阅读 5209

Dask的本地集群配置和编程

Dask提供了多种分布式调度器,当缺少多台服务器时候,也可以通过本地集群来实现单机分布式的计算。这篇博客主要就是介绍如何实现Dask的单机分布式调度器。第一小节是简介,第二节是单机调度器的简写版本,第三节是单机调度器的完整版本,第四节是使用的一些示例。

阅读 5210

OpenAI最新的推理大模型o1与GPT-4o有什么区别?o1一定比o1 mini更强吗?一文总结OpenAI对o1模型的官方答疑

OpenAI的o1模型是当前最强大的具有超强推理能力的大语言模型。但是,o1模型本身的能力如何,o1版本和o1-mini版本模型的差异在哪等似乎都很不清晰。为此,OpenAI在Twitter上举办了一次AMA(Ask me anything)活动,解答了很多大家关心的问题。在这篇博客中,我们根据这个讨论结果总结了一下其中比较重要的信息供大家参考。

阅读 5268

平衡二叉树(Balanced Binary Tree)

平衡二叉树(Balanced Binary Tree)是二叉树(Binary Tree)中最重要的一种树结构。由于它保证了一个良好的二叉树形结构,使得其查找、搜索和删除等操作的效率大大提高,是应用最广泛的二叉树。

阅读 5364