仙宫云4090显卡租赁

大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~

Card image cap
检索增强生成(RAG)

大模型检索增强生成是一种结合了大规模语言模型的自动生成能力和针对特定数据的检索机制,以提供更准确、信息丰富的输出内容的技术。

查看RAG合集
Card image cap
Long Context

大模型对长上下文的处理能力在于它们能够理解和维持较长篇幅的文本连贯性,有助于提升质量,以及对复杂问题和讨论的理解和回应质量。

LongContext合集
Card image cap
AI Agent

大模型的AI Agent是一种高级智能系统,能够理解复杂的指令和查询,并以人类般的方式生成响应、执行任务或提供决策支持。

AI Agent合集
期刊审稿周期查询方法

科研成果发表速度对于国内的硕士生和博士生来说非常重要,它涉及了同学们的毕业、出国和奖学金等。很多童鞋在投稿之前都希望了解期刊的审稿周期。虽然大多数期刊没有规定明确的审稿时间,但是,随着大家对学术期刊投稿周期的关注,很多学术期刊也开始就自己的审稿速度开始有所要求,本文针对常见的期刊审稿周期提供一个普遍的分析方法。

2022/04/24 22:29:37
文本预处理的一般步骤和方法

文本预处理是一件极其耗费时间的事情,不仅繁琐而且涉及的细节很多,处理不好对后面的事情的影响很大。本文将简要介绍文本预处理的一般步骤和方法。

基于GPU的机器学习Python库——RAPIDS简介及其使用方法

随着深度学习的火热,对计算机算力的要求越来越高。从2012年AlexNet以来,人们越来越多开始使用GPU加速深度学习的计算。 然而,一些传统的机器学习方法对GPU的利用却很少,这浪费了很多的资源和探索的可能。在这里,我们介绍一个非常优秀的项目——RAPIDS,这是一个致力于将GPU加速带给传统算法的项目,并且提供了与Pandas和scikit-learn一致的用法和体验,非常值得大家尝试。

2019/07/06 10:58:40
推荐系统之概率矩阵分解的详细推导过程(Probabilistic Matrix Factorization,PMF)

本篇博客详细说明了概率矩阵分解(Probabilistic Matrix Factorization,PMF)的推导过程

深度学习之RNN模型

序列数据是生活中很常见的一种数据,如一句话、一段时间某个广告位的流量、一连串运动视频的截图等。在这些数据中也有着很多数据挖掘的需求。RNN就是解决这类问题的一种深度学习方法。其全称是Recurrent Neural Networks,中文是递归神经网络。主要解决序列数据的数据挖掘问题。

2019/03/15 10:57:12
CNN入门算法LeNet-5介绍(论文详细解读)

1998年,LeCun提出了LeNet-5网络用来解决手写识别的问题。LeNet-5被誉为是卷积神经网络的“Hello Word”,足以见到这篇论文的重要性。在此之前,LeCun最早在1989年提出了LeNet-1,并在接下来的几年中继续探索,陆续提出了LeNet-4、Boosted LeNet-4等。本篇博客将详解LeCun的这篇论文,并不是完全翻译,而是总结每一部分的精华内容。

2019/05/26 22:21:20
深度学习的经典算法的论文、解读和代码实现

深度学习是目前最火的算法领域。他在诸多任务中取得的骄人成绩使得其进化越来越好。本文收集深度学习中的经典算法,以及相关的解释和代码实现。

2019/06/03 11:36:41
实际案例说明AI时代大语言模型三种微调技术的区别——Prompt-Tuning、Instruction-Tuning和Chain-of-Thought

Prompt-Tuning、Instruction-Tuning和Chain-of-Thought是近几年十分流行的大模型训练技术,本文主要介绍这三种技术及其差别。

2023/04/24 22:34:11
R语言如何将实验结果导出

使用R语言进行数据分析时,我们经常会遇到实验结果输出的问题,例如使用summary函数时,变量太多,控制台输出的结果不全,那么怎么将结果导出呢?

集成学习(Ensemble Learning)简介及总结

集成学习(Ensemble Learning)是解决有监督机器学习的一类方法,它的思路是基于多个学习算法的集成来获取一个更好的预测结果。本文将介绍相关概念,并对一些注意事项进行总结。

层次狄利克雷过程(Hierarchical Dirichlet Processes)

Dirichlet过程是一种重要的非参数模型,它可运用在聚类中,自动发现类别的数量。但很多时候,我们的工作都是具有层次话的。这篇文章介绍的层次狄利克雷模型就是解决这样的问题的。

2017/02/27 10:24:53
层次贝叶斯模型(一) 之 构建参数化的先验分布

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同时使用总体分布将参数的依赖结构化,从而避免过拟合问题。

深度学习卷积操作的维度计算(PyTorch/Tensorflow等框架中Conv1d、Conv2d和Conv3d介绍)

卷积操作的维度计算是定义神经网络结构的重要问题,在使用如PyTorch、Tensorflow等深度学习框架搭建神经网络的时候,对每一层输入的维度和输出的维度都必须计算准确,否则容易出错,这里将详细说明相关的维度计算。