大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
tf.nn.softmax_cross_entropy_with_logits函数
M3系列芯片是苹果最新发布的芯片。也是当前苹果性能最好的芯片。由于苹果的统一内存架构以及它的超大内存,此前很多人发现可以使用苹果的电脑来运行大语言模型。尽管它的运行速度不如英伟达最先进的显卡,但是由于超大的内存(显存),它可以载入非常大规模的模型。而此次的M3芯片效果如何,本文做一个简单的分析。
使用爬虫获取数据对科研来说及其重要,本系列博客将讲述如何使用Java编写爬虫工具获取网页数据。包括HttpClient 4.3及以上版本的Header设置,请求参数设置等。
大语言模型的训练是一个十分复杂的技术,不仅涉及到模型的开发与部署,还涉及到数据的获取。与常规的算法模型不同的是,大语言模型通常需要大量的数据处理步骤。本文是根据英国一位自动工程师总结的大语言模型训练之前的数据处理步骤和决策过程。
LLaMA是由Meta开源的一个大语言模型,是最近几个月一系列开源模型的基础模型。包括著名的vicuna系列、LongChat系列等都是基于该模型微调得到。可以说,LLaMA的开源促进了大模型在开源界繁荣发展。而刚刚,微软官方宣布Azure上架LLaMA2模型!这意味着LLaMA2正式发布!
MetaAI发布的LLaMA系列开源大语言模型已经是开源大模型领域最重要的力量了。相当多的所谓开源大模型都是基于这个模型微调得到。在上个月,LLaMA2发布,吸引了全球非常多的关注,也有相当多的后续模型基于LLaMA2进行优化。而今天MetaAI再次开源全新的编程大模型——CodeLLaMA系列,这是MetaAI第一次发布编程大模型,本次发布的CodeLLaMA共有9个版本,分别是CodeLLaMA系列、针对Python优化的CodeLLaMA-Python系列和针对指令优化的CodeLLaMA-Inst
SQLCoder 是 Defog 团队推出的一款前沿的语言模型,专门用于将自然语言问题转化为 SQL 查询。这是一个拥有150亿参数的模型,其性能略微超过了 gpt-3.5-turbo 在自然语言到 SQL 生成任务上,并且显著地超越了所有流行的开源模型。更令人震惊的是,尽管 SQLCoder 的大小只有 text-davinci-003 的十分之一,但其性能却远超后者。
当数据量达到一定程度,单机的处理能力会无法达到性能的要求,采用并行计算,并利用多台服务器进行分布式处理可能会提升数据处理的速度,达到性能要求。然而如果使用不当,并行处理可能并不会提升处理的速度。这篇博客介绍了Dask中关于并行处理的一些效率方面的建议,尽管是针对Dask的说明,但对于所有的并行处理来说都是适用的。
OpenAI在其官方GitHub上公开了一个最新的开源Python库:tiktoken,这个库主要是用力做字节对编码的。相比较HuggingFace的tokenizer,其速度提升了好几倍。
BERT是很好的模型,但是它的参数太大,网络结构太复杂。在很多没有GPU的环境下都无法部署。本文讲的是如何利用BERT构造更好的小的逻辑回归模型来代替原始BERT模型,可以放入生产环境中,以节约资源。
网站启用HTTPS必须制作证书,而证书的制作需要定期更新。这里介绍了Certbot证书自动生成工具和自动更新的方法。并描述了Tomcat如何配置pem证书。
ChatGPT是最近半年多全球最火的产品。去年11月底发布之后,ChatGPT仅仅2个月时间就收获了1亿的月活。尽管在前几个月,ChatGPT是一枝独秀的存在,几乎没有任何可以与其竞争的产品与服务。然而在2023年7月份快结束的今天,市场上已经有相当多优秀的产品可供大家使用。
Google发布面试辅助工具Interview Warmup帮助我们理解谷歌面试内容
数据科学的Python——keras备忘录发布,含Keras的各种使用样例
6种大模型的使用方式总结,使用领域数据集持续做无监督预训练可能是一个好选择
20条关于DeepSeek的FAQ解释DeepSeek发布了什么样的模型?为什么大家如此关注这些发布的模型?他们真的绕过CUDA限制,打破了Nvidia的护城河了吗?
强烈推荐!清华大学100亿参数规模的免费商用授权大模型:CPM-Bee 10B
来自OpenAI的官方解释:ChatGPT中的GPTs与Assistants API的区别是什么?有什么差异?
Llama3相比较前两代的模型(Llama1和Llama2)有哪些升级?几张图简单总结Llama3的训练成本、训练时间、模型架构升级等情况