大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。
预训练大模型,尤其是大语言模型已经是当前最火热的AI技术。2018年Google发布BERT模型之后,fine-tuning技术也随之流行,即将预训练模型的权重冻结,然后根据具体任务进行微调变得十分有效且被应用在很多场景。而随着ChatGPT的火热,parameter-efficient fine-tuning和prompt-tuning技术似乎也有替代传统fine-tuning的趋势,本篇论文将简单描述预训练模型领域这三种微调技术及其差别。
Hugging Face是一家非常活跃的人工智能创业公司。它拥有一个非常强大并且活跃的人工智能社区。有超过5000多家机构都在Hugging Face的社区发布内容,包括Google AI、Facebook AI、微软等。自从2016年成立以来,这家企业经历了5轮融资,总共募集了6000万美金。本文将简要介绍这家企业相关的信息。
多元正态(高斯)分布分布是我们最常用的分布之一,这篇博客的主要内容来自Will Penny的文章的翻译。主要讲述关于多元正态分布的贝叶斯推导
在2016年,Szegedy等人提出了inception v2的模型(论文:Rethinking the inception architecture for computer vision.)。其中提到了Label Smoothing技术,可以提高模型效果。
大模型对显卡资源的消耗是很大的。但是,具体每个模型消耗多少显存,需要多少资源大模型才能比较好的运行是很多人关心的问题。此前,DataLearner曾经从理论上给出了大模型显存需求的估算逻辑,详细说明了大模型在预训练阶段、微调阶段和推理阶段所需的显存资源估计,而HuggingFace的官方库Accelerate直接推出了一个在线大模型显存消耗资源估算工具Model Memory Calculator,直接可以估算在HuggingFace上托管的模型的显存需求。
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用
当前的大语言模型主要是预训练大模型,在大规模无监督数据上训练之后,再经过有监督微调和对齐之后就可以完成很多任务。尽管如此,面对垂直领域的应用,大模型依然需要微调才能获得更好地应用结果。而大模型的微调有很多方式,包括指令微调、有监督微调、提示工程等。其中,指令微调(Instruction Tuning)作为改进模型可控性最重要的一类方法,缺少深入的研究。浙江大学研究人员联合Shannon AI等单位发布了一篇最新的关于指令微调的综述,详细描述指令微调的各方面内容。
pandas.get_dummies是pandas中一种非常高效的方法。它最主要的作用是可以将分类变量转变成dummy变量,也就是虚拟变量。这篇博客将简要的介绍一下pandas.get_dummies()方法,并描述其在机器学习中的应用的一些注意事项。
很多童鞋在查询期刊的时候会发现某些期刊不是SCI(SCIE)索引,而是一个叫ESCI的索引。这似乎有点像SCI,但好像又有区别,所以大家会有疑问,本篇博客将解释二者的区别。
随着各种AI模型的快速发展,选择合适的模型成为了研究和开发的一大挑战。最近一段时间,国产模型不断涌现,让人应接不暇。尽管开源的繁荣提供了更多的选择,实际上也造成了选型的困难,尽管业界提供了很多评测基准,但是,**很多模型在公布的评测结果中对比的模型基准和选择的测试基准都很少,甚至只选择对自己有利的结果**。为了更加方便大家对比相关的结果,DataLearner上线了大模型评测综合排行对比表,给大家提供一个更加清晰的对比结果。我们主要关注的是国内开源大模型和一些全球主流模型的对比结果。
tokens危机到来该怎么办?新加坡国立大学最新研究:为什么当前的大语言模型的训练都只有1次epoch?多次epochs的大模型训练是否有必要?
大模型的多语言能力来自哪里?大模型是否有自己的内部语言?在英文数据集上学习到的知识可以用中文表达出来吗?
比Office Copilot更快一步~基于AI大语言模型生成PPT、Word和网页的应用的新产品测试~Gamma.APP,PPT打工人必备
重磅!阿里开源325亿参数规模的推理大模型QwQ-32B:性能接近DeepSeek R1满血版,参数更低,免费商用授权!
OpenAI发布最新最强大的AI对话系统——GPT3.5微调的产物ChatGPT
HuggingFace宣布在transformers库中引入首个RNN模型:RWKV,一个结合了RNN与Transformer双重优点的模型