DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:模型/
  4. 第12页
标签

「模型」相关文章(第12页)

汇总「模型」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#模型
OpenAI第二代DALL·E发布,可以使用自然语言创造和编辑图片的模型

OpenAI第二代DALL·E发布,可以使用自然语言创造和编辑图片的模型

今天,时隔一年后,OpenAI发布了第二代的DALL·E模型。相比较第一代的模型,DALL·E 2,以4倍的分辨率生成更真实和准确的图像。

2022/04/06 23:25:383,023
#OpenAI#语言模型
Google最新超大模型Pathways:一个会讲笑话的6400亿参数的语言模型

Google最新超大模型Pathways:一个会讲笑话的6400亿参数的语言模型

今天,Google介绍了一个新的语言模型,一个Pathways语言模型:PaLM,这是一个用Pathways系统训练的5400亿个参数、仅有dense decoder的Transformer模型,在数百个语言理解和生成任务上对PaLM进行了评估,发现它在大多数任务中实现了最先进的性能,在许多情况下都有显著的优势。

2022/04/05 11:13:041,376
#论文快讯#语言模型
大型语言模型的新扩展规律(DeepMind新论文)——Training Compute-Optimal Large Language Models

大型语言模型的新扩展规律(DeepMind新论文)——Training Compute-Optimal Large Language Models

3月29日,DeepMind发表了一篇论文,"Training Compute-Optimal Large Language Models",表明基本上每个人--OpenAI、DeepMind、微软等--都在用极不理想的计算方式训练大型语言模型。论文认为这些模型对计算的使用一直处于非常不理想的状态。并提出了新的模型缩放规律。

2022/04/04 13:14:092,829
#deepmind#论文快讯
隐马尔科夫模型及其在NLP中的应用指南

隐马尔科夫模型及其在NLP中的应用指南

隐马尔可夫模型(HMM)是一种统计模型,也用于机器学习。它可以用来描述取决于内部因素的可观察事件的演变,而这些因素是无法直接观察到的。这是一类概率图形模型,允许我们从一组观察到的变量中预测一串未知的变量。在这篇文章中,我们将详细讨论隐马尔可夫模型。我们将了解它可以使用的背景,我们也将讨论它的不同应用。我们还将讨论HMM在PoS标签中的使用和python的实现。文章中所涉及的主要内容如下。

2021/10/17 15:53:453,048
#HMM#机器学习
模型中的参数和超参数

模型中的参数和超参数

模型中的参数和超参数

2019/03/27 21:20:133,246
#模型中的参数和超参数
Keras框架下的保存模型和加载模型

Keras框架下的保存模型和加载模型

Keras框架下的保存模型和加载模型

2019/03/27 21:19:463,161
#Keras框架下的保存模型和加载模型
变分推断之高斯混合模型(案例及代码)

变分推断之高斯混合模型(案例及代码)

变分推断以及高斯混合模型应用

2019/02/14 15:44:168,404
#变分推断#高斯混合模型
盒模型

盒模型

2018/10/07 22:17:022,594
#盒模型
主题模型聚类匹配2018TKDE阅读笔记(Topic Models for Unsupervised Cluster Matching)

主题模型聚类匹配2018TKDE阅读笔记(Topic Models for Unsupervised Cluster Matching)

主题模型聚类匹配

2018/04/24 16:48:573,063
#主题模型聚类匹配
对比关系生成模型(Comparative Relation Generative Model)

对比关系生成模型(Comparative Relation Generative Model)

2018/03/09 09:00:212,781
#生成模型
高斯混合模型(GMM)

高斯混合模型(GMM)

高斯混合模型是一个参数概率密度函数,它是一组高斯密度函数的加权求和。在生物统计领域,高斯混合模型通常是连续测度或者特征的概率分布的参数模型。高斯混合模型可以使用迭代的EM算法或者最大后验概率法估计参数。

2017/11/30 15:57:0411,086
#混合模型#统计
Topic model相关文章汇总

Topic model相关文章汇总

2017/11/15 08:42:593,171
#主题模型
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)

Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)

Dirichlet过程是一个随机过程,在非参数贝叶斯模型中有广泛运用,最常见的应用是Dirichlet过程混合模型

2017/11/14 15:06:41103,703
#Dirichlet分布#Dirichlet过程
回归模型中的交互项简介(Interactions in Regression)

回归模型中的交互项简介(Interactions in Regression)

在回归模型中加入交互项是一种非常常见的处理方式。它可以极大的拓展回归模型对变量之间的依赖的解释。本篇博客将简要介绍这个交互项。

2017/10/16 20:58:0999,786
#交互项#回归模型
Targeted Topic Modeling for Focused Analysis(TTM的理解)

Targeted Topic Modeling for Focused Analysis(TTM的理解)

2017/05/08 21:39:002,623
#主题模型
推荐模型:显式反馈模型VS隐式反馈模型

推荐模型:显式反馈模型VS隐式反馈模型

推荐中,有研究explict feedback,有研究implict feedback,今天就来谈谈这两种基本模型是怎么建的?其实,都是套路~

2017/03/09 14:22:125,982
#显式反馈模型#隐式反馈模型
狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)

狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)

狄利克雷过程混合模型(Dirichlet Process Mixture Model, DPMM)是一种非参数贝叶斯模型,它可以理解为一种聚类方法,但是不需要指定类别数量,它可以从数据中推断簇的数量。这篇博客将描述该模型及其求解过程。

2016-08-19 18:04:5623,525
#dirichletprocessmixturemodel#dpmm
BPR:面向隐式反馈数据的贝叶斯个性化排序

BPR:面向隐式反馈数据的贝叶斯个性化排序

本文是Steffen Rendle的文章BPR: Bayesian Personalized Ranking from Implicit Feedback的译文

2016-05-08 10:05:484,833
#BPR#排序模型
层次贝叶斯模型(一) 之 构建参数化的先验分布

层次贝叶斯模型(一) 之 构建参数化的先验分布

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同时使用总体分布将参数的依赖结构化,从而避免过拟合问题。

2016-04-07 08:19:1319,334
#层次模型#统计推断
机器学习中的高斯过程

机器学习中的高斯过程

关于高斯过程,其实网上已经有很多中文博客的介绍了。但是很多中文博客排版实在是太难看了,而且很多内容介绍也不太全面,搞得有点云里雾里的。因此,我想自己发表一个相关的内容,大多数内容来自于英文维基百科和几篇文章。

2016-04-07 08:14:0121,539
#机器学习#统计
层次贝叶斯模型(三) 之 共轭层次模型的完整贝叶斯分析

层次贝叶斯模型(三) 之 共轭层次模型的完整贝叶斯分析

我们对层次贝叶斯推断的策略与一般的多参数问题一样,但由于在实际中层次模型的参数很多,所以比较困难。在实际中,我们很难画出联合后验概率分布的图形。但是,我们可以使用近似的基于仿真的方法。 在这个部分,我们提出一个联合了分析的和数值的方法从联合后验分布p(θ, φ|y)中获取仿真结果,以 小鼠肿瘤实验的beta-binormial模型为例,总体分布是p(θ|φ),与似然函数p(y|θ)是共轭的。对于很多非共轭层次模型,更高级的算法将在后面叙述。即使针对更复杂的问题,使用共轭分布来获取近似估计也是很有用的。

2016-04-03 17:15:488,513
#层次模型#统计推断
层次贝叶斯模型(二) 之 互换性和建立层次模型

层次贝叶斯模型(二) 之 互换性和建立层次模型

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规 模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同 时使用总体分布将参数的依赖结构化,从而避免过拟合问题。本节将讲述互换性并建立层次模型

2016-04-03 17:15:437,932
#层次模型#统计推断
上一页
1...111213...18
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?
  • Claude Code如何更加高效使用?Claude Code创始人分享的13条Claude Code实践经验总结
  • 微软开源DeepSpeed Chat——一个端到端的RLHF的pipeline,可以用来训练类ChatGPT模型。
  • 抛弃Spark?Flink会是下一代大数据计算引擎吗?
  • sqoop将mysql数据导入到hive指定的数据库中
  • 如何训练你自己的大语言模型?——来自Replit一线工程师的亲身经验
  • 微软发布大语言模型与传统编程语言的集成编程框架——Python版本的Semantic Kernel今日发布
自己制作电影不是梦,视频生成大模型的巨大进步!OpenAI发布第二代视频生成大模型Sora2:物理规律符合率达到88%,可以同步生成音频!物理真实感与声音控制全面突破