DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:评测基准/
  4. 第2页
标签

「评测基准」相关文章(第2页)

汇总「评测基准」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#评测基准
LiveCodeBench:全面的 LLM 代码评测基准基准

LiveCodeBench:全面的 LLM 代码评测基准基准

LiveCodeBench 由加州大学伯克利分校、麻省理工学院和康奈尔大学的研究人员开发,是一个先进的评测基准套件,专门用于严格评估大语言模型 (LLMs) 在代码处理方面的能力,并解决现有基准测试的局限性。通过引入实时更新的问题集和多维度评估方法,LiveCodeBench 确保对 LLM 进行公平、全面和稳健的评估。

2025/03/09 19:55:143,491
#LiveCodeBench#大模型编程评测
SWE-Lancer:OpenAI发布的一个全新大模型评测基准,用来测试大模型解决真实世界软件工程的能力

SWE-Lancer:OpenAI发布的一个全新大模型评测基准,用来测试大模型解决真实世界软件工程的能力

短短两年间,AI技术的进步为软件工程带来了新的可能性。然而,这些模型在真实世界的软件工程任务中究竟能发挥多大的作用?它们能否通过完成实际的软件工程任务来赚取可观的收入?为了验证大模型解决真实任务的能力和水平,OpenAI发布了一个全新的大模型评测基准SWE-Lancer来评测大模型这方面的能力。

2025/02/19 21:40:31429
#SWE-Lancer#大模型评测
MATH vs. MATH-500:数学推理评测基准的对比与解析

MATH vs. MATH-500:数学推理评测基准的对比与解析

在评估大型语言模型(LLM)的数学推理能力时,MATH和MATH-500是两个备受关注的基准测试。尽管它们都旨在衡量模型的数学解题能力,但在发布者、发布目的、评测目标和对比结果等方面存在显著差异。

2025/02/15 11:36:411,974
#MATH#MATH-500
MMLU Pro大模型评测基准介绍:MMLU的进化版本,可以更好区分大模型普遍知识和推理能力的通用评测标准

MMLU Pro大模型评测基准介绍:MMLU的进化版本,可以更好区分大模型普遍知识和推理能力的通用评测标准

大模型已经对很多行业产生了巨大的影响,如何准确评测大模型的能力和效果,已经成为业界亟待解决的关键问题。生成式AI模型,如大型语言模型(LLMs),能够生成高质量的文本、代码、图像等内容,但其评测却相对很困难。而此前很多较早的评测也很难区分当前最优模型的能力。 以MMLU评测为例,2023年3月份,GPT-4在MMLU获得了86.4分之后,将近2年后的2024年年底,业界最好的大模型在MMLU上得分也就90.5,提升十分有限。 为此,滑铁卢大学、多伦多大学和卡耐基梅隆大学的研究人员一起提出了MMLU P

2025/02/06 08:13:312,529
#MMLU#MMLUPro
大模型评测的新标杆:超高难度的“Humanity’s Last Exam”(HLE)介绍

大模型评测的新标杆:超高难度的“Humanity’s Last Exam”(HLE)介绍

近年来,大语言模型(LLM)的能力飞速提升,但评测基准的发展却显得滞后。以广泛使用的MMLU(大规模多任务语言理解)为例,GPT-4、Claude等前沿模型已能在其90%以上的问题上取得高分。这种“评测饱和”现象导致研究者难以精准衡量模型在尖端知识领域的真实能力。为此,Safety for AI和Scale AI的研究人员推出了Humanity’s Last Exam大模型评测基准。这是一个全新的评测基准,旨在成为大模型“闭卷学术评测的终极考验”。

2025/02/03 19:12:292,588
#HLE#大模型评测
Arena Hard:LM-SYS推出的更难更有区分度的大模型评测基准

Arena Hard:LM-SYS推出的更难更有区分度的大模型评测基准

评估日益发展的大型语言模型(LLM)是一个复杂的任务。传统的基准测试往往难以跟上技术的快速进步,容易过时且无法捕捉到现实应用中的细微差异。为此,LM-SYS研究人员提出了一个全新的大模型评测基准——Arena Hard。这个平常基准是基于Chatbot Arena发展而来,相比较常规的评测基准,它更难也更全面。

2025/01/30 20:38:31949
#ArenaHard#ChatbotArena
上一页
12
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8H5文件简介和使用

今日推荐

  • ChatGPT即将可以读取谷歌和微软的云盘数据为你管理私有数据!
  • 对比关系生成模型(Comparative Relation Generative Model)
  • 好消息~Kaggle提高了免费的GPU和内存等计算资源的使用额度!
  • 一个简单的网页布局
  • Java类型转换中valueOf方法和parseInt方法的区别
  • EM算法简介及其例子
  • 网络爬虫中URLConnection的使用[以科学网为例]
BPR:面向隐式反馈数据的贝叶斯个性化排序