大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
OpenAI的o1模型是当前最强大的具有超强推理能力的大语言模型。但是,o1模型本身的能力如何,o1版本和o1-mini版本模型的差异在哪等似乎都很不清晰。为此,OpenAI在Twitter上举办了一次AMA(Ask me anything)活动,解答了很多大家关心的问题。在这篇博客中,我们根据这个讨论结果总结了一下其中比较重要的信息供大家参考。
尽管各家大模型技术进展神速,但是在复杂任务的推理上,大模型目前依然较弱。在去年底,各方消息透露,OpenAI内部有一个称为Q\*的项目取得了重大的突破,可以大幅提高大模型的推理能力。但是,几个月过去了,这个当时吸引了大量讨论的项目没有任何信息。直到昨天,Reuters披露了Q\*项目的进展,这个项目已经变为Strawberry!并且距离发布时间更近了!
大模型的推理速度是当前制约大模型应用的一个非常重要的问题。在很多的应用场景中(如复杂的接口调用、很多信息处理)的场景,更快的大模型响应速度通常意味着更好的体验。但是,在实际中我们可用的场景下,大多数大语言模型的推理速度都非常有限。慢的有每秒30个tokens,快的一般也不会超过每秒100个tokens。而最近,美国加州一家企业Groq推出了他们的大模型服务,可以达到每秒接近500个tokens的响应速度,非常震撼。
大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。
随着大型语言模型(LLM)如 GPT-3 和 BERT 在 AI 领域的崛起,如何在实际应用中高效地进行模型推断成为了一个关键问题。为此,英伟达推出了全新的大模型推理提速框架TensorRT-LM,可以将现有的大模型推理速度提升4倍!
WizardLM是微软联合北京大学开源的一个大语言模型。此前,发布的WizardLM和WizardCoder都是业界开源领域最强的大模型。其中,前者是针对指令优化的大模型,而后者则是针对编程优化的大模型。而此次WizardMath则是他们发布的第三个大模型系列,主要是针对数学推理优化的大模型。在GSM8K的评测上,WizardMath得分超过了ChatGPT-3.5、Claude Instant-1等闭源商业模型,得分十分逆天!
为了提高AI模型的推理速度,降低在不同GPU硬件部署的成本,Meta AI研究人员在昨天发布了一个全新的AI推理引擎AITemplate(AIT),该引擎是一个Python框架,它在各种广泛使用的人工智能模型(如卷积神经网络、变换器和扩散器)上提供接近硬件原生的Tensor Core(英伟达GPU)和Matrix Core(AMD GPU)性能。
DeepGraph Library(DGL)发布了0.81版本
ManusAI技术解析:这真的是Sonnet 3.7+29个工具的简单AI Agent吗?
StabilityAI发布实时文本生成图片大模型SDXL Turbo——生成一张图片可能只需要0.207秒
OpenAI隐藏的一个ChatGPT新功能:在对话框中@任意GPTs,获得回答!一个巨大的由各种GPT组成的聊天世界即将到来
Grok3发布!马斯克旗下大模型企业xAI发布Grok3、Grok3-mini,支持Deep Research、语音交互和“思考”模式的推理大模型,推理模式评测结果全球最强