DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: 多模态评测
Tag

Articles tagged "多模态评测"

A curated list of original AI and LLM articles related to "多模态评测", updated regularly.

Tags:#多模态评测
大模型评测SimpleVQA全方位深度解析,直击多模态模型“事实幻觉”

大模型评测SimpleVQA全方位深度解析,直击多模态模型“事实幻觉”

随着多模态大语言模型(MLLM)在各个领域的应用日益广泛,一个核心问题浮出水面:我们如何信赖它们生成内容的准确性?当模型需要结合图像和文本进行问答时,其回答是否基于事实,还是仅仅是“看似合理”的幻觉?为了应对这一挑战,一个名为SimpleVQA的新型评测基准应运而生,旨在为多模态模型的事实性能力提供一个清晰、可量化的度量衡。

2025/08/01 15:49:57241
#多模态评测#大模型评测
MMMU基准:多模态多学科复杂推理能力的权威评估体系

MMMU基准:多模态多学科复杂推理能力的权威评估体系

大规模多学科多模态理解与推理基准(MMMU)于2023年11月推出,是一种用于评估多模态模型的复杂工具。该基准测试人工智能系统在需要大学水平学科知识和深思熟虑推理的任务上的能力。与之前的基准不同,MMMU强调跨多个领域的先进感知和推理,旨在衡量朝专家级人工智能通用智能(AGI)的进展。

2025/05/05 21:48:00666
#MMMU#多模态评测#大模型多模态能力
大模型多模态评测基准MMMU介绍

大模型多模态评测基准MMMU介绍

大模型多模态评测基准MMMU(大规模多学科多模态理解和推理基准)是一项旨在评估多模态人工智能模型在复杂跨学科任务中综合能力的测试工具。

2025/02/21 20:51:01821
#MMMU#大模型多模态评测#大模型评测

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

Java爬虫入门简介(四)——HttpClient保存使用Cookie登录Eclipse使用Maven插件的简单介绍使用Let's Encrypt生成Tomcat使用的SSL证书并使用OpenAI再度泄露重磅更新,GPT-4即将发布128K的超长上下文版本以及多模态版本,价格下降一大半!使用卷积神经网络进行手写识别一个简单的网页布局比OpenAI原始的Whisper快70倍的开源语音识别模型Whisper JAX发布!智谱AI发布第二代CodeGeeX编程大模型:CodeGeeX2-6B,最低6GB显存可运行,基于ChatGLM2-6B微调实际案例说明AI时代大语言模型三种微调技术的区别——Prompt-Tuning、Instruction-Tuning和Chain-of-Thought122

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介