DataLearner logoDataLearnerAI
AI Tech Blogs
Leaderboards
Benchmarks
Models
Resources
Tool Directory

加载中...

DataLearner logoDataLearner AI

A knowledge platform focused on LLM benchmarking, datasets, and practical instruction with continuously updated capability maps.

产品

  • Leaderboards
  • 模型对比
  • Datasets

资源

  • Tutorials
  • Editorial
  • Tool directory

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner curates industry data and case studies so researchers, enterprises, and developers can rely on trustworthy intelligence.

隐私政策服务条款
  1. Home/
  2. Blog/
  3. Tag: 超长上下文
Tag

Articles tagged "超长上下文"

A curated list of original AI and LLM articles related to "超长上下文", updated regularly.

Tags:#超长上下文
MiniMaxAI开源全球推理长度最长的推理大模型MiniMax-M1:100万tokens输入,最高支持80K的推理长度

MiniMaxAI开源全球推理长度最长的推理大模型MiniMax-M1:100万tokens输入,最高支持80K的推理长度

MiniMaxAI于2025年6月17日正式发布了其新一代大模型——MiniMax-M1。MiniMax-M1的核心亮点在于结合了混合专家(MoE)架构和创新的闪电注意力(Lightning Attention)机制。MiniMax-M1不仅原生支持高达100万Token的上下文长度,推理的tokens也支持最高80K,是当前支持的最多推理长度的大模型。此外,MiniMax-M1在计算效率上也很高,例如在生成10万Token时,其FLOPs消耗仅为DeepSeek R1的25%!

2025/06/17 23:49:56574
#MiniMax#MiniMax-M1#超长上下文模型
A21 Labs宣布开源520亿参数的全新混合专家大模型(Mixture of Experts,MoE)Jamba:单个GPU的上下文长度是Mixtral 8x7B的三倍

A21 Labs宣布开源520亿参数的全新混合专家大模型(Mixture of Experts,MoE)Jamba:单个GPU的上下文长度是Mixtral 8x7B的三倍

A21实验室是一家以色列的大模型研究机构,专门从事自然语言处理相关的研究。就在今天,A21实验室开源了一个全新的基于混合专家的的大语言模型Jamba,这个MoE模型可以在单个GPU上支持最高140K上下文的输入,非常具有吸引力。

2024/03/29 00:04:31527
#Jamba#MoE#混合专家大模型
全球首个200万上下文商业产品开始内测!月之暗面Kimi助手开启最长上下文模型内测邀请。

全球首个200万上下文商业产品开始内测!月之暗面Kimi助手开启最长上下文模型内测邀请。

MoonshotAI(月之暗面)是一家中国的大模型初创企业,在2023年4月份成立。其最为著名的产品就是KimiChat,一个完全免费的大模型聊天机器人。就在刚刚,MoonshotAI官方宣布开启200万上下文的KimiChat内测!这应该是全球首个商业产品支持并内测200万上下文输入的模型了!此前其它产品宣布的200万上下文大多数都没有公开商发。

2024/03/18 17:37:091,370
#KimiChat#Long-Context#MoonshotAI
国产全球最长上下文大语言模型开源:XVERSE-13B-256K,一次支持25万字输入,免费商用授权~

国产全球最长上下文大语言模型开源:XVERSE-13B-256K,一次支持25万字输入,免费商用授权~

深圳的元象科技开源了一个最高上下文256K的大语言模型XVERSE-13B-256K,可以一次性处理25万字左右,是目前上下文长度最高的大模型,而且这个模型是以Apache2.0协议开源,完全免费商用授权。

2024/01/17 22:27:071,161
#Long-Context#XVERSE-13B-256K#超长上下文
如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~

如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~

Claude 2.1版本的模型上下文长度最高拓展到200K,也是目前商用领域上下文长度支持最长的模型之一。但是,在模型发布不久之后,有人测试发现模型在超过20K之后效果下降明显。但是Anthropic官方发布了一个说明解释这不是Claude模型本身在超长上下文的真实原因,主要是模型拒绝回答一些与文章主体不符的内容,实际中只需要一句prompt即可提高性能,将模型在超长上下文的水平准确率从27%提高到98%。

2023/12/07 19:14:471,562
#Claude2.1#long-context#超长上下文
GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!

GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!

GPT-4 Turbo是OpenAI最新发布的号称性能超过当前GPT-4的模型。在新版本的ChatGPT中已经可以使用。而接口也在开放。除了速度和质量外,GPT-4 Turbo最吸引人的是支持128K超长上下文输入。但是,实际测试中GPT-4 Turbo对于超过73K tokens文档的理解能力急速下降。

2023/11/09 18:51:482,204
#GPT-4Turbo#Long-Context#超长上下文
大模型如何使用长上下文信息?斯坦福大学最新论文证明,你需要将重要的信息放在输入的开始或者结尾处!

大模型如何使用长上下文信息?斯坦福大学最新论文证明,你需要将重要的信息放在输入的开始或者结尾处!

大模型的长输入在很多场景下都有非常重要的应用,如代码生成、故事续写、文本摘要等场景,支撑更长的输入通常意味着更好的结果。昨天,斯坦福大学、加州伯克利大学和Samaya AI的研究人员联合发布的一个论文中有一个非常有意思的发现:当相关信息出现在输入上下文的开始或结束时,大模型的性能通常最高,而当大模型必须访问长上下文中间的相关信息时,性能显著下降。本文将简单介绍一下这个现象。

2023/09/17 22:22:405,761
#long-context#大模型#大语言模型
支持超长上下文输入的大语言模型评测和总结——ChatGLM2-6B表现惨烈,最强的依然是商业模型GPT-3.5与Claude-1.3

支持超长上下文输入的大语言模型评测和总结——ChatGLM2-6B表现惨烈,最强的依然是商业模型GPT-3.5与Claude-1.3

目前开源领域已经有一些模型宣称支持了8K甚至是更长的上下文。那么这些模型在长上下文的支持上表现到底如何?最近LM-SYS发布了LongChat-7B和LangChat-13B模型,最高支持16K的上下文输入。为了评估这两个模型在长上下文的表现,他们对很多模型在长上下文的表现做了评测,让我们看看这些模型的表现到底怎么样。

2023/07/02 09:40:483,854
#LLM#long-context#开源大模型

Topic Collections

RAG (Retrieval-Augmented Generation)Long Context (Large Language Models)AI Agent Practices

Today's Picks

开源多模态大模型新选择:DeepSeekAI(深度求索科技)开源全新多模态大模型DeepSeek-VL模型,包含可在手机端运行的13亿规模tiny多模态模型。用python绘制散点图阿里开源2个全新多模态理解大模型Qwen3-VL-4B和8B:主流评测结果超Gemini 2.5 Flash Lite、GPT-5 Nano,面向多模态Agent和机器人应用打造Claude开始转向收费模式!推出Claude Pro,定价20美元一个月解锁PDF理解最强大模型的能力~重磅!Meta发布LLaMA2,最高700亿参数,在2万亿tokens上训练,各项得分远超第一代LLaMA~完全免费可商用!亚马逊最新发布Feature Store简介最全面的Kaggle解决方案和创意清单关于机器学习理论和实践的信息图高斯混合模型(GMM)Google发布Gemini 2.0 Pro:MMLU Pro评测超过DeepSeek V3略低于DeepSeek R1,最高上下文长度支持200万tokens!开发者每天免费50次请求!

Hot Blogs

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介