大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
恰巧,我最近发现了一个网站——Open ChatGPT,网址是 https://open-chat-gpt.com/cn。 简单来说,该网站调用 ChatGPT-4 (最新版) 的 API,让用户创建各种指定角色,服务于生活跟工作。不仅如此,还支持连ChatGPT官网都还没用上的AI画图功能。目前,相比其他网页各种限制使用次数的,这网站非常可贵在于可以无限次免费使用ChatGPT-4...
kaggle是各类机器学习竞赛的著名平台,上面聚集了大量的机器学习比赛和数据集,也有大量的数据处理相关专业人员。每年官方都会向平台用户发放问卷,调查数据科学家的工具使用和平台采用情况。今年的调查结果也在两天前发出,有很多有意思的结论。
Aquila-7B是北京人工智能研究院(BAAI)开源的一个可商用大语言模型。因为其良好的推理效果和友好的商用协议,使用的人较多。今天,BAAI再次开源2个基于Aquila-7B微调的编程大模型:AquilaCode-7B-multi和AquilaCode-7B-py。
OpenAI在GPT-4发布一年之后再次更新其基础模型,发布最新的GPT-4o模型,其中o代表的是omni,即“全能”的意思。GPT-4o相比较此前最大的升级是对多模态的支持以及性能的提升。GPT-4o在各方面比GPT-4更强,但是速度更快,开发者接口的价格则只有一半!
XVERSE-13B是元象开源的一个大语言模型,发布一周后就登顶HuggingFace流行趋势榜。该模型最大的特点是支持多语言,其中文和英文水平都十分优异,在评测结果上超过了Baichuan-13B,与ChatGLM2-12B差不多,不过ChatGLM2-12B是收费模型,而XVERSE-13B是免费商用授权!
文本embedding是当前大模型应用中一个十分重要的角色。在长上下文支持、私有数据问答等方面有非常重要的应用。但是相比较开源领域快速发布的大模型节奏,开源的embedding模型和数据却非常少。今天,GPT4All宣布在其软件中增加embedding的支持,这是一个完全免费且可商用的产品,最重要的是可以在我们本地用CPU来做推理。
今天,Google介绍了一个新的语言模型,一个Pathways语言模型:PaLM,这是一个用Pathways系统训练的5400亿个参数、仅有dense decoder的Transformer模型,在数百个语言理解和生成任务上对PaLM进行了评估,发现它在大多数任务中实现了最先进的性能,在许多情况下都有显著的优势。
今天,一位年仅20岁的小哥willdepue 开源了230万arXiv论文的标题和摘要的embedding向量数据集,完全开源。该数据集包含截止2023年5月4日的所有arXiv上的论文标题和摘要的embedding结果,使用的是开源的Instructor XL抽取。未来将开放更多其它相关数据的embedding结果
大语言模型一个非常重要的应用方式就是微调(fine-tuning)。微调通常需要改变模型的预训练结果,即对预训练结果的参数继续更新,让模型可以在特定领域的数据集或者任务上有更好的效果。但是微调一个严重的副作用是可能会让大模型遗忘此前预训练获得的知识。为此,香港大学研究人员推出了一种新的微调方法,可以保证模型原有能力的基础上提升特定领域任务的水平,并据此开源了一个新的模型LLaMA Pro。
Claude 2.1版本的模型上下文长度最高拓展到200K,也是目前商用领域上下文长度支持最长的模型之一。但是,在模型发布不久之后,有人测试发现模型在超过20K之后效果下降明显。但是Anthropic官方发布了一个说明解释这不是Claude模型本身在超长上下文的真实原因,主要是模型拒绝回答一些与文章主体不符的内容,实际中只需要一句prompt即可提高性能,将模型在超长上下文的水平准确率从27%提高到98%。
OpenAI的开发者日发布了许多更新。其中,普通用户可以微调GPT-4是非常值得期待的功能之一。但是,OpenAI还有一个针对企业的定制化GPT-4的训练服务,称为Custom Models。而这项为企业单独定制的GPT-4训练服务最新截图显示,需要几个月来训练模型,而且费用是200-300万美元起步!
2023年3月23日OpenAI官方宣布ChatGPT即将支持Plugin模式。这是一种用插件的方式来解锁ChatGPT的能力,包括让ChatGPT可以浏览网页、从本地商店订购食材等。今天,沃顿商学院教授Ethan Mollick在推特上公布了自己收到了ChatGPT内测邀请,并使用它的代码解释器(Python Interpreter)插件让ChatGPT针对一份excel数据完成了非常专业的数据分析的工作。
重磅福利,斯坦福大学在去年秋季开设了应该是全球第一个transformers相关的课程,授课人员来自OpenAI、Google Brain、Facebook人工智能实验室、DeepMind甚至是牛津大学的业界与学术界的一线大牛。而这两天,这门课相关视频也都公开了,大家可以去观看学习了!
MetaAI最近公布了一个新的大语言模型预训练方法(LIMA: Less Is More for Alignment)。它最大的特点是不使用ChatGPT那样的(Reinforcement Learning from Human Feedback,RLHF)方法进行对齐训练。而是利用1000个精选的prompts与response来对模型进行微调,但却表现出了极其强大的性能。能够从训练数据中的少数几个示例中学习遵循特定的响应格式,包括从规划旅行行程到推测关于交替历史的复杂查询。
抛弃RLHF?MetaAI发布最新大语言模型训练方法:LIMA——仅使用Prompts-Response来微调大模型
ChatGPT官方代码解释器插件Code-Interpreter大揭秘:Code-Interpreter背后都有什么(执行环境、硬件资源、包含的Python库等)?
Gamma函数(伽玛函数)的一阶导数、二阶导数公式推导及java程序
传闻OpenAI内部大模型推理能力获得进展,Q*项目进化成Strawberry!并且距离发布时间更近了!
Python报Memory Error或者是numpy报ValueError: array is too big; `arr.size * arr.dtype.itemsize` 的解决方法